• Quantum physics is the most exciting advance in the history of science. Its firestorm like birth and development makes it an excellent example of the symbiosis between theory and experimentation
• It is the fountainhead of Modern Chemistry, Biology and many fields of Engineering
• What to expect in this course:
 – You will see Quantum mechanics a few times as UCSD UG
 • For Example, 130 A,B,C series will be a formal and mathematical account of the methods of quantum Mechanics
 – This course will be a more conceptual and “intuitive” introduction to quantum physics
 – The last part of this course will be a survey of some interesting examples of the Quantum Universe:
 • Particle Physics
 • Astrophysics and Cosmology
Some Bookkeeping Issues Related to This Course

- Course text: Modern Physics by Tipler, Llewellyn
 - 4th edition, Published by WH Freeman
- Instructor:
 - Vivek Sharma: modphys@ucsd.edu
 - 3314 Mayer Hall, Ph: (858) 534 1943
 - Office Hours:
 - Mon: 1:30-2:30pm, Tue: 2:30-3:30pm
- Teaching Assistant:
 - Jason Wright: jwright@physics.ucsd.edu
 - 5116 Mayer Hall
 - Office Hour: Thursday 3:00-4:00pm in Mayer 2101 (Tutorial Center)
- Class Web Site: http://modphys.ucsd.edu/4es05
 - Web page is important tool for this class, make sure you can access it

4E Website: http://modphys.ucsd.edu/4es05/

Pl. try to access this website and let me know if you have problems viewing any content.
Pl. attend discussion session on Wednesday and problem session on Thursday if you plan to do well in this course.

General Class Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday 11:00-11:50 am</th>
<th>CNTR 217A</th>
<th>Prof. Sharma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Monday 1:30 - 2:30 pm</td>
<td>Mayer 3314</td>
<td>Prof. Sharma</td>
</tr>
<tr>
<td>Prof. Office Hour</td>
<td>Tuesday 9:00-9:50 am</td>
<td>SOLIS 109</td>
<td>Prof. Sharma</td>
</tr>
<tr>
<td>Lecture</td>
<td>Tuesday 2:30-3:30 pm</td>
<td>Mayer 3314</td>
<td>Prof. Sharma</td>
</tr>
<tr>
<td>Lecture</td>
<td>Wednesday 11:00-11:50 am</td>
<td>CNTR 217A</td>
<td>Prof. Sharma</td>
</tr>
<tr>
<td>Discussion</td>
<td>Wednesday 12:00-12:50 pm</td>
<td>SOLIS 109</td>
<td>Prof. Sharma/Jason Wright</td>
</tr>
<tr>
<td>TA Office Hour</td>
<td>Thursday 3:00-4:00 pm</td>
<td>Mayer 2101</td>
<td>Jason Wright</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>Thursday 7:00-8:50 pm</td>
<td>SOLIS 111</td>
<td>Jason Wright</td>
</tr>
<tr>
<td>Lecture</td>
<td>Friday 11:00-11:50 am</td>
<td>CNTR 217A</td>
<td>Announce Quiz/Midterm Dates</td>
</tr>
<tr>
<td>Prof. Office Hour</td>
<td>Weekend By Appointment</td>
<td>Mayer 3314</td>
<td>Prof. Sharma</td>
</tr>
</tbody>
</table>

Check the announcements page for important schedule changes.

Week 1 Schedule & HW

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Read</th>
<th>Topic</th>
<th>HW problems for the week</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>11:00 am</td>
<td>Ch. 3</td>
<td>Quantization of Charge, Light & Energy</td>
<td>Read Section 5.1</td>
<td>CNTR 217A</td>
</tr>
<tr>
<td>Tuesday</td>
<td>9:00 am</td>
<td>Ch. 3</td>
<td>Quantization of Charge, Light & Energy</td>
<td>Ch.3: 2,6,11,15,21,22</td>
<td>SOLIS 109</td>
</tr>
<tr>
<td>Wednesday</td>
<td>11:00 am</td>
<td>Ch. 3</td>
<td>Quantization of Charge, Light & Energy</td>
<td>Ch.3: 25,32,34,38,41</td>
<td>CNTR 217A</td>
</tr>
<tr>
<td>Wednesday</td>
<td>12:00 pm</td>
<td>-</td>
<td>Discussion</td>
<td>-</td>
<td>SOLIS 109</td>
</tr>
<tr>
<td>Thursday</td>
<td>7:00-8:50 pm</td>
<td>-</td>
<td>Problem Session</td>
<td>Attempt problems before PS</td>
<td>SOLIS 111</td>
</tr>
<tr>
<td>Friday</td>
<td>11:00 am</td>
<td>Ch. 3</td>
<td>Quantization of Charge, Light & Energy</td>
<td>Ch. 3: 42,46</td>
<td>CNTR 217A</td>
</tr>
</tbody>
</table>

Check the announcements page for important schedule changes.
Quizzes, Final and Grades

• Course score = 60% Quiz + 40% Final Exam
 – 5 quizzes if I can schedule them, best 4 (=n-1) scores used
 • Two problems in each quiz, 45 minutes to do it
 – One problem HW like, other more interesting
 • Closed book exam, but you can bring one page “CHEAT SHEET”
 • Blue Book required, Code numbers will be given at the 1st quiz. Bring calculator, check battery!
 • No makeup quizzes
 • See handout for Quiz regrade protocol

• Final Exam : TBA, but in Week of June 6-10
 – Inform me of possible conflict within 2 weeks of course
 – Don’t plan travel/vacation before finals schedule is confirmed!
 • No makeup finals for any reason

All Quizzes During My Research Related Travel

Tentative Schedule, TBC next week

• Quiz 1 on Monday April 11
• Quiz 2 on Friday April 29
• Quiz 3 Friday May 13
• Quiz 4 Friday 20 or 27th (TBC)
• Quiz 5 Friday June 3
Course Grade

• Our wish is that everybody gets an A! …So no curve
• Grading is on an absolute scale. Roughly it looks like this:

<table>
<thead>
<tr>
<th>Total Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 85</td>
<td>A+</td>
</tr>
<tr>
<td>> 75</td>
<td>A</td>
</tr>
<tr>
<td>> 60</td>
<td>B</td>
</tr>
<tr>
<td>> 45</td>
<td>C</td>
</tr>
<tr>
<td>< 30</td>
<td>F</td>
</tr>
</tbody>
</table>

How To Do Well In This Course

• Read the assigned text BEFORE lecture to get a feel of the topic
• Don’t rely on your intuition! The concepts are quite abstract.
• Attend lecture (ask questions during/before/after lecture) and discussion.
• Do not just accept a concept without understanding the logic
• Attempt all homework problems yourself
 • Before looking at the problem solutions (available on web by Tuesday afternoon) & before attending Problem Solving session
• The textbook, the lectures and the discussions are all integral to this course. Just following lectures is not sufficient (I won’t cover every thing)
• Quarter goes fast, don’t leave everything for the week before exam!!
• Don’t hesitate to show up at Prof. or TA office hour (they don’t bite!)
2005 is World Year of Physics: Celebrating Einstein

In this course we examine his contribution to the birth of Quantum Physics, although he was quite skeptical about Quantum Mechanics and devised many thought experiments to defeat and invalidate QM. He failed!

Constituents of Nature: The Ancient View

Every civilization has speculated about the constitution of the Universe. The Greek philosophers thought that the universe was made up of just four elements: Earth, air, Fire and Water.

This was a great “scientific” theory because it was simple but it had one drawback: It was wrong! There was no experimental proof for it.
Concept of An Atom

- Around 6th-5th century BC, Indians and more famously the Greeks speculated on “indivisible” constituents of matter.
- In 5th BC, Leucippus and his follower Democritus set the scene for modern physics by asking “what would happen if you chopped up matter into ever smaller pieces. There would be a limit beyond which you could chop no more!”
- They called this indivisible piece an Atom (or Anu in Sanskrit).

Some Highlights in Understanding Matter

- Lavoisier’s measurement of conservation of matter in chemical reactions.
- Faraday’s Electrolysis experiment (1833): Same amount of charge F is required to decompose 1 gram-ionic weight of monovalent ions
 - 1 F passed thru NaCl leads to 23gm of Na at cathode and 35.5gm Cl at anode but it takes 2F to disassociate CuSO₄
 - Mass of element liberated at an electrode is directly proportional to charge transferred and inversely prop. to the valence of the freed element.
- Avagadro postulated that pure gases at same temperature and pressure have same number of molecules per unit volume.
 - \(N_A = 6.023 \times 10^{23} \)
- Dalton & Mendeleev’s theory that all elementary atoms differing in mass and chemical properties.
- Discovery of cathode rays and measurement of their properties
Quantum Nature of Matter

• Fundamental Characteristics of different forms of matter
 – Mass
 – Charge
 • Experimentally measurable
 – using some combination of \(E \) & \(B \)
 \[
 \vec{F} = q(\vec{E} + \vec{v} \times \vec{B})
 \]
 – Or \(E/B \) and some other macroscopic force
 e.g. Drag Force

Thomson’s Determination of \(e/m \) of Electron

• In E Field alone, electron lands at D
• In B field alone, electron lands at E
• When E and B field adjusted to cancel each other’s force \(\rightarrow \) electron lands at F
 \[
 \frac{e}{m} = 1.7588 \times 10^{11} \text{ C/Kg}
 \]
Millikan’s Measurement of Electron Charge

Find charge on oil drop is always in integral multiple of some \(Q \)
\[Q_e = 1.688 \times 10^{-19} \text{ Coulombs} \]
\[\Rightarrow M_e = 9.1093 \times 10^{-31} \text{ Kg} \]
\[\Rightarrow \text{Fundamental properties (finger print) of electron} \]
(similarly can measure proton properties etc)

Necessary Homework Reading

• Pl. read Section 3.1, including the discussion detailing the Millikan’s oil drop experiment (download from www.freeman.com/modphys4e)
• This is straightforward reading. HW problems are assigned on this and the material may show up in the quiz
• What is the nature of light?
 – When it propagates?
 – When it interacts with Matter?

• What is Nature of Matter?
 – When it interacts with light?
 – As it propagates?

• Revolution in Scientific Thought
 – A firestorm of new ideas (NOT steady dragged out progress)
 • Old concepts violently demolished, new ideas born
 – Rich interplay of experimental findings & scientific reason

• One such revolution happened at the turn of 20th Century
 – Led to the birth of Quantum Theory & Modern Physics

Maxwell’s Equations:
\[\frac{\partial^2 E}{\partial x^2} = \frac{\mu_0 \epsilon_0}{c^2} \frac{\partial^2 E}{\partial t^2} \]
\[\frac{\partial^2 B}{\partial x^2} = \frac{\mu_0 \epsilon_0}{c^2} \frac{\partial^2 B}{\partial t^2} \]
Hertz & Experimental Demonstration of Light as EM Wave

![Diagram of LC oscillator and traveling wave](image)

Energy source

Transformer

Transmission line

Electric dipole antenna

Properties of EM Waves: Maxwell’s Equations

<table>
<thead>
<tr>
<th>Lop waves</th>
<th>Radio waves</th>
<th>Infrared</th>
<th>Ultraviolet</th>
<th>X-rays</th>
<th>Gamma rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^7</td>
<td>10^8</td>
<td>10^9</td>
<td>10^9</td>
<td>10^10</td>
<td>10^10</td>
</tr>
<tr>
<td>10^8</td>
<td>10^9</td>
<td>10^10</td>
<td>10^10</td>
<td>10^11</td>
<td>10^11</td>
</tr>
<tr>
<td>10^9</td>
<td>10^10</td>
<td>10^10</td>
<td>10^11</td>
<td>10^11</td>
<td>10^11</td>
</tr>
<tr>
<td>10^10</td>
<td>10^11</td>
<td>10^11</td>
<td>10^11</td>
<td>10^11</td>
<td>10^11</td>
</tr>
</tbody>
</table>

Larger the amplitude of Oscillation
More intense is the radiation

Energy Flow in EM Waves

Poynting Vector \(\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) \)

Power incident on an area \(A \)

\[
\mathbf{S} \cdot \mathbf{A} = \frac{1}{\mu_0} \left(AE_0 B_0 \sin^2 (kx - \omega t) \right)
\]

Intensity of Radiation \(I = \frac{1}{2\mu_0 c} E_0^2 \)

Larger the amplitude of Oscillation
More intense is the radiation
Disasters in Classical Physics (1899-1922)

Disaster ➔ Experimental observation that could not be explained by Classical theory

- Disaster # 1: Nature of Blackbody Radiation from your BBQ grill
- Disaster # 2: Photo Electric Effect
- Disaster # 3: Scattering light off electrons (Compton Effect)

Resolution of Experimental Observation will require radical changes in how we think about nature
- ➔ QUANTUM PHYSICS: The Art of Conversation with Subatomic Particles

Nature of Radiation: An Expt with BBQ Grill

Question: Distribution of Intensity of EM radiation Vs T & λ

- Radiator (BBQ grill) at some temp T
- Emits variety of wavelengths
 - Some with more intensity than others
- EM waves of diff. λ bend differently within prism
- Eventually recorded by a detector (eye)
- Map out emitted Power / area Vs λ

Notice shape of each curve and learn from it
Radiation From a Blackbody at Different Temperatures

Radiancy is Radiation intensity per unit λ

(a) Intensity of Radiation $I = \int R(\lambda) d\lambda \propto T^4$

$I = \sigma T^4$ (Area under curve)

Stephan-Boltzmann Constant $\sigma = 5.67 \times 10^{-8} \text{ W} / \text{m}^2 \text{K}^4$

(b) Higher the temperature of BBQ, Lower is the λ of PEAK intensity

$\lambda_{\text{MAX}} \propto 1 / T$

$\lambda_{\text{MAX}} \propto 1 / T$

As a body gets hotter it gets more RED then White: Wein’s Law

Reason for different shape of $R(\lambda)$ Vs λ for different temperature? Can one explain in on basis of Classical Physics??
Blackbody Radiator: An Idealization

Classical Thought:
- Box is filled with EM standing waves
- Radiation reflected back-and-forth between walls
- Radiation in thermal equilibrium with walls of Box
- How may waves of wavelength λ can fit inside the box?

Blackbody Absorbs everything
Reflects nothing
All light entering opening gets absorbed (ultimately) by the cavity wall

Cavity in equilibrium T w.r.t. surrounding. So it radiates everything it absorbs

Emerging radiation is a sample of radiation inside box at temp T

Predict nature of radiation inside Box?

Standing Waves

$$L = \frac{\lambda}{2}$$

$$L = \lambda = \frac{2\lambda}{2}$$

$$L = \frac{3\lambda}{2}$$
The Beginning of The End! How BBQ Broke Physics

Classical Calculation

of standing waves between Wavelengths \(\lambda \) and \(\lambda + d\lambda \) are

\[N(\lambda)d\lambda = \frac{8\pi V}{\lambda^4} d\lambda; \quad V = \text{Volume of box} = L^3 \]

Each standing wave contributes energy \(E = kT \) to radiation in Box

Energy density

\[u(\lambda) = \frac{\# \text{ of standing waves}}{\text{volume}} \times \frac{\text{Energy/Standing Wave}}{\text{volume}} = \frac{8\pi}{\lambda^4} \times \frac{1}{V} \times kT = \frac{8\pi kT}{\lambda^4} \]

Radiancy

\[R(\lambda) = \frac{c}{4} u(\lambda) = \frac{c}{4} \frac{8\pi}{\lambda^4} kT = \frac{2\pi c}{\lambda^4} kT \]

Radiancy is Radiation intensity per unit \(\lambda \) interval: Let’s plot it

Prediction: as \(\lambda \to 0 \) (high frequency \(f \)), \(R(\lambda) \to \text{Infinity!} \)

Oops!

Ultra Violet (Frequency) Catastrophe

oops!

Rayleigh-Jean's law (Classical theory)

Planck's law

\[0 \quad 2000 \quad 4000 \quad 6000 \quad \lambda, \text{nm} \]
That was a Disaster!

Disaster #2: Photo-Electric Effect

Light of intensity I, wavelength λ and frequency f incident on a photo-cathode. Can change I, f, λ.

Measure characteristics of current in the circuit as a function of I, f, λ.
Photo Electric Effect: Measurable Properties

- Rate of electron emission from cathode
 - From current i seen in ammeter in the circuit. More photoelectrons \rightarrow more current registered in ammeter

- Maximum kinetic energy of emitted electron
 - By applying retarding potential on electron moving left to right towards Collector plate
 - $K_{\text{MAX}} = eV_0$ ($V_0 = \text{Stopping voltage}$)
 - Stopping potential \rightarrow no current flows

- Photoelectric Effect on different types of photo-cathode metal surface

- Time between shining light and first sign of photo-current in the circuit

Observations: PhotoCurrent Vs Intensity of Incident Light

- Bright light: $I_2 > I_1$
- Dim light: I_1

$(i \, \mu \text{A})$

V

$-V_0$
Observations: Photocurrent Vs frequency of incident light

Shining light with constant intensity but different frequencies

Stopping Voltage \((V_0) \) Vs Incident Light Frequency \((f) \)

Try different photocathode materials.....see what happens
Conclusions from the Experimental Observations

- Max Kinetic energy K_{MAX} independent of Intensity I for light of same frequency.
- No photoelectric effect occurs if light frequency f is below a threshold no matter how high the intensity of light.
- For a particular metal, light with $f > f_t$ causes photoelectric effect IRRESPECTIVE of light intensity.
 - f_t is characteristic of that metal.
- Photoelectric effect is instantaneous!...not time delay.

Can one Explain all this Classically!

Classical Explanation of Photo Electric Effect

- As light Intensity increased $\Rightarrow \vec{E}$ field amplitude larger
 - E field and electrical force seen by the “charged subatomic oscillators” Larger
 - $\vec{F} = e\vec{E}$
 - More force acting on the subatomic charged oscillator
 - \Rightarrow More (work done) \Rightarrow more energy transferred to it
 - \Rightarrow Charged particle “hooked to the atom” should leave the surface with more Kinetic Energy KE!! The intensity of light (EM Wave) shining rules!
- As long as light is intense enough, light of ANY frequency f should cause photoelectric effect.
- Because the Energy in a Wave is uniformly distributed over the Spherical wavefront incident on cathode, should be a noticeable time lag ΔT between time is incident & the time a photo-electron is ejected : Energy absorption time
 - How much time for electron ejection? Lets calculate it classically.
Classical Physics: Time Lag in Photo-Electric Effect?

- Electron absorbs energy incident on a surface area where the electron is confined ≅ size of atom in cathode metal.
- Electron is “bound” by attractive Coulomb force in the atom, so it must absorb a minimum amount of radiation before it is stripped off.
- Example: Laser light Intensity $I = 120 \text{W/m}^2$ on Na metal.
 - Binding energy $= 2.3 \text{eV} = \text{"Work Function } \Phi \text{"}$
 - Electron confined in Na atom, size $\approx 0.1 \text{nm}$; how long before ejection?
 - Average Power Delivered $P_{AV} = I \cdot A$, $A = \pi r^2 \approx 3.1 \times 10^{-20} \text{m}^2$
 - If all energy absorbed then $\Delta E = P_{AV} \cdot \Delta T \Rightarrow \Delta T = \Delta E / P_{AV}$

$$\Delta T = \frac{(2.3 \text{eV})(1.6 \times 10^{-19} \text{J/eV})}{(120 \text{W/m}^2)(3.1 \times 10^{-20} \text{m}^2)} = 0.10 \text{S}$$

- Classical Physics predicts measurable delay even by the primitive clocks of 1900.
- But in experiment, the effect was observed to be instantaneous!!
- Classical Physics fails in explaining all results.

That was a Disaster!

(# 2)

Beginning of a search for a new hero or an explanation or both!
Max Planck & Birth of Quantum Physics

Planck noted the Ultraviolet catastrophe at high frequency
“Cooked” calculation with new “ideas” so as bring:
\[R(\lambda) \to 0 \text{ as } \lambda \to 0 \]
\[f \to \infty \]

- Cavity radiation as equilibrium exchange of energy between EM radiation & “atomic” oscillators present on walls of cavity
- Oscillators can have any frequency \(f \)
- But the Energy exchange between radiation and oscillator NOT continuous, it is discrete …in packets of same amount
- \[E = n \hbar f \text{, with } n = 1, 2, 3, 4, \ldots \infty \]
 \(\hbar = \text{constant he invented, a number he made up!} \)

Planck’s “Charged Oscillators” in a Black Body Cavity

Planck did not know about electrons, Nucleus etc:
They had not been discovered then
Planck, Quantization of Energy & BlackBody Radiation

- Keep the rule of counting how many waves fit in a BB Volume
- Radiation Energy in cavity is quantized
- EM standing waves of frequency f have energy $E = n \ h f$ ($n = 1, 2, 3 \ldots 10 \ldots 1000\ldots$)
- Probability Distribution: At an equilibrium temp T, possible energy of oscillators is distributed over a spectrum of states: $P(E) = e^{E/kT}$

By this discrete statistics, large energy = high f modes of EM disfavored

Planck’s Calculation: A preview to keep the story going

$$R(\lambda) = \left(\frac{c}{4}\right) \left(\frac{8\pi}{\lambda^4}\right) \left[\frac{hc}{\lambda} \left(\frac{1}{e^{hc/\lambda kT} - 1}\right) \right]$$

Odd looking form

When $\lambda \rightarrow$ large $\Rightarrow \frac{hc}{\lambda kT} \rightarrow$ small

Recall $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots$

$$e^{\frac{hc}{\lambda kT}} - 1 = (1 + \frac{hc}{\lambda kT} + \frac{1}{2} \left(\frac{hc}{\lambda kT}\right)^2 + \ldots - 1$$

$$= \frac{hc}{\lambda kT}$$

plugging this in $R(\lambda)$ eq:

$$R(\lambda) = \left(\frac{c}{4}\right) \left(\frac{8\pi}{\lambda^4}\right) \frac{hc}{\lambda kT}$$

Graph & Compare With BBQ data
Planck’s Formula and Small λ

When λ is small (large f)

$$\frac{1}{\frac{hc}{e^{\frac{hc}{kT}} - 1}} \approx \frac{1}{\frac{hc}{e^{\frac{hc}{kT}}}} = e^{\frac{hc}{kT}}$$

Substituting in $R(\lambda)$ eqn:

$$R(\lambda) = \left(\frac{c}{4}\right)\left(\frac{8\pi}{\lambda^4}\right) e^{-\frac{hc}{\lambda kT}}$$

As $\lambda \to 0$, $e^{-\frac{hc}{\lambda kT}} \to 0$

$\Rightarrow R(\lambda) \to 0$

Just as seen in the experimental data!

Planck’s Explanation of Black Body Radiation

Fit formula to Exptal data

$h = 6.56 \times 10^{-34}$ J.S

$h =$ very very small
Major Consequence of Planck’s Energy Postulate

Quantization of Energy!

Energy

\[E \]

\[n \]

\[h \]

\[0 \]

\[1 \]

\[2 \]

\[3 \]

\[4 \]

\[\text{to } n = \infty \]

Judging Planck’s Postulate: Visionary or just a Wonk?

Einstein Provided the “warmth & feeling” to Planck’s Wonky idea

"It's an excellent proof, but it lacks warmth and feeling."
Einstein’s Explanation of Photoelectric Effect

What Maxwell Saw of EM Waves

- Energy associated with EM waves not uniformly distributed over wavefront, rather is contained in packets of energy ⇒ PHOTON
- $E = hf = hc/\lambda$ [but is it the same h as in Planck’s th.?
- Light shining on metal emitter/cathode is a *stream of photons* of energy E which depends on frequency f
- Photons knock off electron from metal instantaneously
 - Transfer all energy to electron
 - Energy gets used up to pay for Work Function Φ. Remaining energy shows up as KE of electron $KE = hf - \Phi$
- Cutoff Frequency $hf_0 = \Phi$ (pops an electron, $KE = 0$)
- Larger intensity I ⇒ more photons incident
- Low frequency light f ⇒ not energetic enough to overcome work function of electron in atom
Einstein’s Interpretation of Photoelectric Effect (1905)

\[E = hf = \varphi + KE_{\text{electron}} \]

\[eV_0 = KE = hf - \varphi \]

Now interpret the experimental data
Under the “single bullet” theory

Makes Sense!

Modern View of Photoelectric Effect
Is “h” same in Photoelectric Effect as BB Radiation?

Slope $h = 6.626 \times 10^{-34}$ JS

Einstein \rightarrow Nobel Prize!

Work Function (Binding Energy) In Metals

<table>
<thead>
<tr>
<th>TABLE 3-1</th>
<th>Photoelectric work functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>ϕ (eV)</td>
</tr>
<tr>
<td>Na</td>
<td>2.28</td>
</tr>
<tr>
<td>C</td>
<td>4.81</td>
</tr>
<tr>
<td>Cd</td>
<td>4.07</td>
</tr>
<tr>
<td>Al</td>
<td>4.08</td>
</tr>
<tr>
<td>Ag</td>
<td>4.73</td>
</tr>
<tr>
<td>Pt</td>
<td>6.35</td>
</tr>
<tr>
<td>Mg</td>
<td>3.68</td>
</tr>
<tr>
<td>Ni</td>
<td>5.01</td>
</tr>
<tr>
<td>Se</td>
<td>5.11</td>
</tr>
<tr>
<td>Pb</td>
<td>4.14</td>
</tr>
</tbody>
</table>
Reinterpreting Photoelectric Effect With Light as Photons

Photoelectric Effect on An Iron Surface

Light of Intensity $I = 1.0 \, \mu W/cm^2$ incident on $1.0cm^2$ surface of Fe

Assume Fe reflects 96% of light

further only 3% of incident light is Violet region ($\lambda = 250nm$)
barely above threshold frequency for Photoelectric effect

(a) Intensity available for Ph. El effect $I = 3\% \times 4\% \times (1.0 \, \mu W/cm^2)$
(b) how many photo-electrons emitted per second?

\[
\text{# of photoelectrons} = \frac{\text{Power}}{h f} = \frac{3\% \times 4\% \times (1.0 \, \mu W/cm^2) \lambda}{hc} = \frac{(250 \times 10^{-9} m)(1.2 \times 10^{-9} J/s)}{(6.6 \times 10^{-34} J\cdot s)(3.0 \times 10^4 m/s)} 1.5 \times 10^9
\]

(c) Current in Ammeter : $i = (1.6 \times 10^{-19} C)(1.5 \times 10^9) = 2.4 \times 10^{-10} A$
(d) Work Function $\Phi = hf_b = (4.14 \times 10^{-15} eV\cdot s)(1.1 \times 10^{15} s^{-1})$
 $= 4.5 \, eV$

Facts about Light Quantum

- The human eye is a sensitive photon detector at visible wavelengths: Need >5 photons of ≈ 550nm to register on your optical sensor
- The Photographic process :
 – Energy to Dissociate an AgBr molecule = 0.6eV
- Photosynthesis Process : 9 sunlight photon per reaction cycle of converting CO$_2$ and water to carbohydrate & O$_2$
 – chlorophyll absorbs best at $\lambda \approx 650$-700 nm
- Designing Space Shuttle “skin”: Why Platinum is a good thing
- designing Solar cells : picking your metal cathode
Photon & Relativity: Wave or a Particle?

- Photon associated with EM waves, travel with speed \(c \).
- For light (\(m = 0 \)) : Relativity says \(E^2 = (pc)^2 + (mc^2)^2 \).
- \(\Rightarrow E = pc \).
- But Planck tells us : \(E = hf = h \frac{c}{\lambda} \).
- Put them together : \(hc / \lambda = pc \)
 - \(\Rightarrow p = h / \lambda \).
 - Momentum of the photon (light) is inversely proportional to \(\lambda \).
- But we associate \(\lambda \) with waves & \(p \) with particleswhat is going on??
 - Quantum Physics!

X Rays “Bremsstrahlung”: The Braking Radiation

- EM radiation, produced by bombarding a metal target with energetic electrons.
- Produced in general by ALL decelerating charged particles.
- X rays : very short \(\lambda \approx 60-100 \text{ pm} \) (10^{-12} m), large frequency \(f \).
- Very penetrating because very energetic \(E = hf \) !!

Useful for probing structure of sub-atomic Particles (and your teeth !)
X Ray Production Mechanism

When electron passes near a positively charged target nucleus contained in target material, its deflected from its path because of Coulomb attraction, experiences acceleration.

E&M \(\Rightarrow \) that any charged particle will emit radiation when accelerated. This EM radiation “appears” as photons. Since photo carries energy and momentum, the electron must lose same amount. If all of electron’s energy is lost in just one single collision then:

\[
e \Delta V = h f_{\text{max}} = \frac{hc}{\lambda_{\text{min}}} \text{ or } \lambda_{\text{min}} = \frac{hc}{e \Delta V}
\]

X Ray Spectrum in Molybdenum (Mo)

- Braking radiation predicted by Maxwell’s eqn
- Decelerated charged particle will radiate continuously
- Spikes in the spectrum are characteristic of the nuclear structure of target material and varies between materials
- Shown here are the \(\alpha \) and \(\beta \) lines for Molybdenum (Mo)
- To measure the wavelength, diffraction grating is too wide, need smaller slits
 - An atomic crystal lattice as diffraction grating (Bragg)
X rays As Subatomic Probes

X rays are EM waves of low wavelength, high frequency (and energy) and demonstrate characteristic features of a wave
- Interference & Diffraction

- To probe into a structure size ΔX you need a light source with wavelength much smaller than the features of the object being probed
 - Good Resolution $\Rightarrow \lambda_{\text{SOURCE}} \ll \Delta X$
 - X rays allows one probe at atomic size $(10^{-10})m$

An X-ray Tube from 20th Century

The “High Energy Accelerator” of 1900s: produced energetic light: X-Ray, gave new optic to subatomic world
Compton Scattering: Quantum Pool!

- Arthur Compton (USA) proves that X-rays (EM Waves) have particle-like properties (acts like photons)
 - Showed that classical theory failed to explain the scattering effect of X-rays on to free (not bound, barely bound electrons)
- Experiment: shine X-ray on to a surface with "almost" free electrons
 - Watch the scattering of light off electron: measure time + \(\lambda \) of scattered X-ray

Compton Effect: what should Happen Classically?

- Plane wave \([f, \lambda]\) incident on a surface with loosely bound electrons \(\rightarrow\) interaction of E field of EM wave with electron: \(F = eE\)
- Electron oscillates with \(f = f_{\text{incident}}\)
- Eventually radiates spherical waves with \(f_{\text{radiated}} = f_{\text{incident}}\)
 - At all scattering angles, \(\Delta f\) & \(\Delta \theta\) must be zero
- Time delay while the electron gets a "tan": soaks in radiation
Compton Scattering: Experimental Setup & Results

- **Carbon target**
- **θ = 90°**
- **κ'**
- **X-ray source**
- **Rotating crystal**
- **Ionization chamber**

Compton Scattering: Observations

- **θ = 0°**
 - Primary beam
 - Intensity vs. λ
 - λ₀ to λ

- **θ = 45°**
 - Intensity vs. λ
 - λ₀ to κ'

- **θ = 90°**
 - Intensity vs. λ
 - λ₀ to κ'

- **θ = 135°**
 - Intensity vs. λ
 - λ₀ to κ'
Compton Scattering: Summary of Observations

How does one explain this startling anisotropy?

\[\Delta \lambda = (\lambda' - \lambda) \propto (1 - \cos \theta)! \]

Not isotropy in distribution of scattered radiation

Compton Effect: Quantum (Relativistic) Pool

\[\Delta \lambda = (\lambda' - \lambda) \propto (1 - \cos \theta)! \]

How does one explain this startling anisotropy?
Compton Scattering: The Quantum Picture

Energy Conservation:

\[E + m_e c^2 = E' + E_e \]

Momentum Conserves:

\[p = p' \cos \theta + p_e \cos \phi \]
\[0 = p' \sin \theta - p_e \sin \phi \]

Use these to eliminate electron deflection angle (not measured)

p_e \cos \phi = p - p' \cos \theta

p_e \sin \phi = p' \sin \theta

Square and add \(\Rightarrow \)

\[p_e^2 = p^2 - 2 pp' \cos \theta + p' \]

Eliminate \(p_e \) & \(E_e \) using

\[E_e^2 = p_e^2 c^2 + m_e^2 c^4 \]
\[E_e = (E - E') + m_e c^2 \]

\[((E - E') + m_e c^2)^2 = \left[p^2 - 2 pp' \cos \theta + p' \right] + (m_e c^2)^2 \]

For light, \(p = \frac{E}{c} \) \(\Rightarrow \)

\[E^2 + E'^2 - 2EE' + 2(E - E')mc^2 = \left[\frac{E^2}{c^2} - 2 \frac{EE'}{c^2} \cos \theta + \frac{E'^2}{c^2} \right] c^2 \]

\[\Rightarrow -EE' + (E - E')mc^2 = -EE' \cos \theta \]

\[\Rightarrow \frac{E - E'}{EE'} = -\frac{1}{m_e c^2} (1 - \cos \theta) \Rightarrow \]

\[(\lambda' - \lambda) = \left(\frac{\hbar}{m_e c} \right) (1 - \cos \theta) \]
Rules of Quantum Pool between Photon and Electron

(b) Quantum model

\[(\lambda' - \lambda) = \left(\frac{h}{m_e c} \right)(1 - \cos \theta) \]

Checking for “h” in Compton Scattering

From scattered photon \(\lambda \), plot \(\Delta \lambda \), calculate slope and measure “h”

Compton wavelength \(\lambda_C = \frac{h}{m_e c} \)

\[(\lambda' - \lambda) = \left(\frac{h}{m_e c} \right)(1 - \cos \theta) \]

It’s the same value for h again!

Energy Quantization is a UNIVERSAL characteristic in energy transactions!
$E \Leftrightarrow mc^2 + mc^2$

same kind of matter & antimatter produced or destroyed in pairs

Constructive Interference depends on Path (or phase) dif. Traversed

Two Identical waves $y_i(x,t) = y_{	ext{max}} \sin(kx - \omega t + \phi_i)$ travel along $+x$ and interfere to give a resulting wave $y(x,t)$. The resulting wave form depends on relative phase difference between 2 waves. Shown for $\Delta \phi = 0, \pi, \frac{2}{3} \pi$
Bragg Scattering: Probing Atoms With X-Rays

Constructive Interference when net phase difference is $0, 2\pi$ etc. This implied path difference traveled by two waves must be integral multiple of wavelength: $n\lambda = 2ds\sin\theta$

From X Ray (EM Wave) Scattering data, size of atoms was known to be about 10^{-10} m
Where are the electrons inside the atom?

Early Thought: “Plum pudding” model → Atom has a homogenous distribution of Positive charge with electrons embedded in them

• How to test these hypotheses? → Shoot “bullets” at the atom and watch their trajectory. What Kind of bullets?
 • Indestructible charged bullets → Ionized He++ atom = α++ particles
 • Q = +2e, Mass M_α = 4amu >> m_e, V_α = 2 x 10^7 m/s (non-relativistic)

[charged to probe charge & mass distribution inside atom]
Plum Pudding Model of Atom

- Non-relativistic mechanics ($V_a/c = 0.1$)
- In Plum-pudding model, α-rays hardly scatter because
 - Positive charge distributed over size of atom ($10^{-10}m$)
 - $M_\alpha >> M_e$ (like moving truck hits a bicycle)
 - Predict α-rays will pass thru array of atoms with little scatter

Need to test this hypothesis → Ernest Rutherford

“Rutherford Scattering” discovered by his PhD Student (Marsden)
Force on \(\alpha \)-particle due to heavy Nucleus

- Outside radius \(r = R \), \(F \propto Q/r^2 \)
- Inside radius \(r < R \), \(F \propto q/r^2 = Qr/R^2 \)
- Maximum force at radius \(r = R \)

\(\alpha \) particle trajectory is hyperbolic

Scattering angle is related to impact parameter

Impact Parameter \(b = \left(\frac{kqO}{m_a v_a^2} \right) \left(\cot \frac{\theta}{2} \right) \)

Rutherford Scattering: Prediction and Experimental Result

\[\Delta n = \frac{k^2 Z^2 e^4 N n A}{4 R^2 \left(\frac{1}{2} m_a v_a^2 \right)^2 \sin^4(\varphi/2)} \]

scattered Vs \(\varphi \) depends on:
- \(n = \# \) of incident alpha particles
- \(N = \# \) of nuclei/area of foil
- \(Ze = \) Nuclear charge
- \(K_{\alpha} \) of incident alpha beam
- \(A = \) detector area
Rutherford Scattering & Size of Nucleus

(a) distance of closest approach \(r \) size of nucleus

Kinetic energy of \(\alpha \) particle will penetrate thru a radius \(r \) until all its kinetic energy is used up to do work AGAINST the Coulomb potential of the Nucleus:

\[
K_\alpha = \frac{1}{2} m_\alpha v_\alpha^2 = 8 \text{MeV} = k \frac{(Z_e)(2e)}{r}
\]

\[\Rightarrow r = \frac{2kZe^2}{K_\alpha}\]

For \(K_\alpha = 7.7 \text{MeV}, Z = 13 \)

\[\Rightarrow r = \frac{2kZe^2}{K_\alpha} = 4.9 \times 10^{-15} \text{m}\]

Size of Nucleus = \(10^{-15} \text{m} \)

Size of Atom = \(10^{-10} \text{m} \)

Dimension Matters!

Size of Nucleus = \(10^{-15} \text{m} \)

Size of Atom = \(10^{-10} \text{m} \)

How are the electrons located inside an atom?

How are they held in a stable fashion?

necessary condition for us to exist!

All these discoveries will require new experiments and observations.
Where are the Electrons in an Atom?

Clues: Continuous & Discrete spectra of Elements
Visible Spectrum of Sun Through a Prism

Emission & Absorption Line Spectra of Elements

- Source of wavelengths λ_1 and λ_2 ($\lambda_2 > \lambda_1$)
- Hydrogen spectra

(a)

(b)
Kirchhoff’s Experiment: “D” Lines in Na

D lines **darken** noticeably when Sodium vapor introduced Between slit and prism

Emission & Absorption Line Spectrum of Elements

Emission line appear dark because of photographic exposure

Absorption spectrum of Na While light passed thru Na vapor it is absorbed at specific \(\lambda \)
Spectral Observations: series of lines with a pattern

- Empirical observation (by trial & error)
- All these series can be summarized in a simple formula

\[
\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right), \quad n_f > n_i, n_i = 1, 2, 3, 4, \ldots
\]

Fitting to spectral line series data

\[R = 1.09737 \times 10^7 \text{ m}^{-1} \]

How does one explain this?

The Rapidly Vanishing Atom: A Classical Disaster!

Not too hard to draw analogy with dynamics under another Central Force

Think of the Gravitational Force between two objects and their circular orbits.

Perhaps the electron rotates around the Nucleus and is bound by their electrical charge

\[F = G \frac{M_1 M_2}{r^2} \quad \Rightarrow \quad k \frac{Q_1 Q_2}{r^2} \]

Laws of E&M destroy this equivalent picture: Why?
Classical Trajectory of The Orbiting Electron

Classical model of Hydrogenic Atom (Z protons) is mechanically stable but is electrically unstable!

Mechanically balanced: \[F = \frac{kZe^2}{r^2} = \frac{mv^2}{r} \] (Coulomb force = Centripetal force)

But electron is always accelerating towards center of circle. Laws of classical electrodynamics predict that accelerating charge will radiate light of frequency \(f = \) freq. of periodic motion

\[f = \frac{1}{2\pi r} \left(\frac{kZe^2}{rm} \right)^{1/2} \left(\frac{1}{2\pi r} \right)^{1/2} - \frac{1}{r^2} \]

And Total energy \(E = KE + U = \frac{mv^2}{2} + \left(\frac{kZe^2}{r^2} \right) \), but since \(\frac{kZe^2}{2r} = \frac{mv^2}{2} \)

\[\Rightarrow E = \frac{kZe^2}{2r} - \frac{kZe^2}{r^2} - \frac{kZe^2}{2r} \sim \frac{1}{r^2} \]

Thus Classical physics predicts that as energy is lost to radiation, electron's orbit will become smaller and smaller while frequency of radiation will become larger and larger!
The electron will reach the Nucleus in \(\sim 1 \mu s \) !!

In reality, this does not occur. Unless excited by external means, atoms do not radiate AT ALL!!

Bohr’s Bold Model of Atom: Semi Quantum/Classical

1. Electron in circular orbit around proton with vel=\(v \)
2. Only stationary orbits allowed. Electron does not radiate when in these stable (stationary) orbits
3. Orbits quantized:
 \[m_e v \cdot r = n \frac{h}{2\pi} \quad (n=1,2,3\ldots) \]
4. Radiation emitted when electron “jumps” from a stable orbit of higher energy \(\rightarrow \) stable orbit of lower energy \(E_f - E_i = hf = hc/\lambda \)
5. Energy change quantized
 - \(f = \) frequency of radiation

\[U(r) = -k \frac{e^2}{r} \]
\[KE = \frac{1}{2} m_e v^2 \]
Reduced Mass of 2-body system

- Both Nucleus & e⁻ revolve around their common center of mass (CM)
- Such a system is equivalent to a single particle of "reduced mass" \(\mu \) that revolves around the position of the Nucleus at a distance of (e⁻ - N) separation
 - \(\mu = \frac{(m_eM)}{(m_e+M)} \) when M>>m, \(\mu = m_e \) (Hydrogen atom)
 - Not so when calculating Muon \((m_\mu = 207 m_e) \) or equal mass charges rotating around each other (similar to what you saw in gravitation)

Allowed Energy Levels & Orbit Radii in Bohr Model

- E = KE + U = \(\frac{1}{2} m_e v^2 - k \frac{e^2}{r} \)
 - Force Equality for Stable Orbit
 - Coulomb attraction = CP Force
 - \(\frac{k e^2}{r^2} = \frac{m_e v^2}{r} \)
 - \(KE = \frac{m_e v^2}{2} = k \frac{e^2}{2r} \)

- Total Energy \(E = KE + U = - k \frac{e^2}{2r} \)
 - Negative E \(\Rightarrow \) Bound system
 - This much energy must be added to the system to break up the bound atom

- Radius of Electron Orbit:

 \[
 m_r = n h \\
 v = \frac{n h}{m_r} \\
 => r = \frac{n^2 h^2}{m_k e^2}, n = 1, 2, ..., \infty \\
 \]

- Bohr Radius \(a_0 \)
 - \(a_0 = \frac{1}{2} \frac{h^2}{m_k e^2} = 0.529 \times 10^{-10} m \)

- Quantized orbits of rotation
Energy Level Diagram and Atomic Transitions

\[E_n = K + U = \frac{-ke^2}{2r} \]

since \(r = a_0 n^2 \), \(n = \text{quantum number} \)

\[E_n = \frac{-ke^2}{2a_0 n^2} = -\frac{13.6}{n^2} \text{eV}, \ n = 1, 2, 3, \ldots \]

Interstate transition: \(n_i \rightarrow n_f \)

\[\Delta E = hf = E_f - E_i \]

\[f = \frac{ke^2}{2\hbar a_0} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \]

\[\frac{1}{\lambda} = \frac{f}{c} = \frac{ke^2}{2\hbar c a_0} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \]

\[\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \]

Hydrogen Spectrum: as explained by Bohr

\[E_n = -\left(\frac{ke^2}{2a_0} \right) \frac{Z^2}{n^2} \]

Bohr’s “\(R \)” same as Rydberg Constant \(R \) derived empirically from spectral series
A Look Back at the Spectral Lines With Bohr’s Optic

\[E_n = -\left(\frac{ke^2}{2a_0}\right)\frac{Z^2}{n^2} \]

Rydberg Constant

Bohr’s Atom: Emission & Absorption Spectra

photon

\(n = 2 \)

\(n = 3 \)
a Absorption

b Emission
Some Notes About Bohr Like Atoms

- Ground state of Hydrogen atom (n=1) $E_0 = -13.6$ eV
- Method for calculating energy levels etc applies to all Hydrogen-like atoms $\rightarrow -1e$ around $+Ze$
 - Examples: He+, Li++
- Energy levels would be different if replace electron with Muons
 - Reduced Mass
 - Necessity of Reduced Mass calculation enhanced for “positronium” like systems
- Bohr’s method can be applied in general to all systems under a central force (e.g. gravitational instead of Coulombic)

$$U(r) = \frac{k Q_1 Q_2}{r} \rightarrow G \frac{M_1 M_2}{r}$$
Changes every thing: E, r, f etc
"Importance of constants in your life"

Bohr’s Correspondence Principle

- It now appears that there are two different worlds with different laws of physics governing them
 - The macroscopic world
 - The microscopic world
- How does one transcend from one world to the other?
 - Bohr’s correspondence Principle
 - predictions of quantum theory must correspond to predictions of the classical physics in the regime of sizes where classical physics is known to hold.

$$when \ n \rightarrow \infty \ [Quantum \ Physics] = [Classical \ Physics]$$
Correspondence Principle for Bohr Atom

- When n >> 1, quantization should have little effect, classical and quantum calculations should give same result: Check this ➔

Compare frequency of transition between level \(n_i = n \) and \(n_f = n - 1 \)

In Bohr Model: \(f = \frac{c}{\lambda} = \frac{Z^2 mk^2 e^4}{4\pi^3 h^3} \left(\frac{1}{(n-1)^2} - \frac{1}{n^2} \right) \)

\[
\frac{Z^2 mk^2 e^4}{4\pi^3 h^3} \frac{2n-1}{n^2(n-1)^2} \approx \frac{Z^2 mk^2 e^4}{4\pi^3 h^3} \frac{1}{n^3}
\]

(since n>>1, n-1 \(\approx n \))

And Classically: \(f_{\text{rev}} = \frac{v}{2\pi r} \); using \(v = \frac{nh}{mr} \) and \(r = \frac{nh}{mkZe^2} \)

\[
\Rightarrow f_{\text{rev}} = \frac{nh}{2\pi mr} = \frac{nh}{2\pi mr^2} = \frac{2\pi m(n^2h^2/mkZe^2)^2}{2\pi^3 h^3 n^3}
\]

\(\Rightarrow \) Same!

Atomic Excitation by Electrons: Franck-Hertz Expt

Other ways of Energy exchange are also quantized! Example:

- Transfer energy to atom by colliding electrons on it
 - Elastic and inelastic collisions with a heavy atom (Hg)
- Accelerate electrons, collide with Hg atoms, measure energy transfer in inelastic collision (by applying retarding voltage)
- Count how many electrons get thru and arrive at plate P
Atomic Excitation by Electrons: Franck-Hertz Expt

Plot # of electrons/time (current) overcoming the retarding potential (V)

Equally spaced Maxima in I-V curve

Atoms accept only discrete amount of Energy, no matter the fashion in which energy is transferred

Bohr’s Explanation of Hydrogen like atoms

- Bohr’s Semiclassical theory explained some spectroscopic data → Nobel Prize: 1922
- The “hotch-potch” of classical & quantum attributes left many (Einstein) unconvinced
 - “appeared to me to be a miracle – and appears to me to be a miracle today ….. One ought to be ashamed of the successes of the theory”
- Problems with Bohr’s theory:
 - Failed to predict INTENSITY of spectral lines
 - Limited success in predicting spectra of multi-electron atoms (He)
 - Failed to provide “time evolution” of system from some initial state
 - Overemphasized Particle nature of matter—could not explain the wave-particle duality of light
 - No general scheme applicable to non-periodic motion in subatomic systems
- “Condemned” as a one trick pony! Without fundamental insight …raised the question: Why was Bohr successful?
Princess Louise de Broglie & Matter Waves

• Key to Bohr atom was Angular momentum quantization
• Why this Quantization: \(mvr = |L| = \frac{nh}{2\pi} \) ?
• Invoking symmetry in nature, Princess Louise de Broglie conjectured:

Because photons have wave and particle like nature \(\rightarrow \) particles may have wave like properties !!

Electrons have accompanying “pilot” wave (not EM) which guide particles thru spacetime.

A PhD Thesis Fit For a Prince!

• Matter Wave!
 – “Pilot wave” of \(\lambda = \frac{h}{p} = \frac{h}{(\gamma mv)} \)
 – Frequency of pilot wave \(f = \frac{E}{h} \)

• Consequence:
 – If matter has wave like properties then there would be interference (destructive & constructive) of some kind!
 • Analogy of standing waves on a plucked string to explain the quantization condition of Bohr orbits
Matter Waves: How big, how small?

1. Wavelength of baseball, $m=140\text{g}$, $v=27\text{m/s}$

$$\lambda = \frac{\hbar}{p} = \frac{h}{mv} = \frac{6.63 \times 10^{-34} \text{J}\cdot\text{s}}{0.14\text{kg}(27\text{m/s})} = 1.75 \times 10^{-34} \text{m}$$

$$\Rightarrow \lambda_{\text{baseball}} \ll \text{size of nucleus}$$

$$\Rightarrow \text{Baseball "looks" like a particle}$$

2. Wavelength of electron $K=120\text{eV}$ (assume NR)

$$K = \frac{p^2}{2m} \Rightarrow p = \sqrt{2mK}$$

$$= \sqrt{2(9.11 \times 10^{-31})(120\text{eV})(1.6 \times 10^{-19})}$$

$$= 5.91 \times 10^{-24} \text{Kg.m/s}$$

$$\lambda_e = \frac{\hbar}{p} = \frac{6.63 \times 10^{-34} \text{J}\cdot\text{s}}{5.91 \times 10^{-24} \text{Kg.m/s}} = 1.12 \times 10^{-10} \text{m}$$

$$\Rightarrow \lambda_e = \text{Size of atom}!!$$

Models of Vibrations on a Loop: Model of e in atom

Modes of vibration when a integral # of λ fit into loop
(Standing waves) vibrations continue Indefinitely

Fractional # of waves in a loop can not persist due to destructive interference
De Broglie’s Explanation of Bohr’s Quantization

Standing waves in H atom:

Constructive interference when

\[n\lambda = 2\pi r \]

since \[\lambda = \frac{h}{p} = \frac{h}{mv} \](NR)

\[\Rightarrow \frac{nh}{mv} = 2\pi r \]

\[\Rightarrow nh = mvr \]

Angular momentum
Quantization condition!

This is too intense! Must verify such “loony tunes” with experiment

Reminder: Light as a Wave : Bragg Scattering Expt

X-ray scatter off a crystal sample
X-rays constructively interfere from certain planes producing bright spots

Interference \(\Rightarrow \) Path diff=2dsin\(\theta \) = n\(\lambda \)
Verification of Matter Waves: Davisson & Germer Expt

If electrons have associated wave like properties \rightarrow expect interference pattern when incident on a layer of atoms (reflection diffraction grating) with inter-atomic separation d such that

$$\text{path diff } AB = d \sin \theta = n\lambda.$$

Electrons Diffract in Crystal, just like X-rays

Diffraction pattern produced by 600eV electrons incident on a Al foil target

Notice the waxing and waning of scattered electron intensity.

What to expect if electron had no wave like attribute
Davisson-Germer Experiment: 54 eV electron Beam

Polar graphs of DG expt with different electron accelerating potential when incident on same crystal (d = const)

Peak at Φ=50° when V_{acc} = 54 V

Analyzing Davisson-Germer Expt with de Broglie idea

De Broglie λ for electron accelerated thru V_{acc}=54V

\[
\frac{1}{2}mv^2 = K = \frac{p^2}{2m} = eV \Rightarrow v = \sqrt{\frac{2eV}{m}} ; \quad p = mv = m\sqrt{\frac{2eV}{m}}
\]

If you believe de Broglie

\[
\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{\hbar}{m\sqrt{2meV}} = \lambda^{\text{predict}}
\]

For V_{acc} = 54 Volts ⇒ \(\lambda = 1.67 \times 10^{-10} \text{ m} \) (de Broglie)

Exptal data from Davisson-Germer Observation:

\(d_{\text{nickel}} = 2.15 \times 10^{-10} \text{ m} \) (from Bragg Scattering)

\(\theta_{\text{diff}} = 50° \) (observation from scattering intensity plot)

Diffraction Rule: \(d \sin \phi = n\lambda \)

⇒ For Principal Maxima (n=1), \(\lambda^{\text{calc}} = (2.15 \text{ Å})(\sin 50°) \)

\(\lambda_{\text{predict}} = 1.67 \text{ Å} \)

\(\lambda_{\text{observed}} = 1.65 \text{ Å} \)

Excellent agreement!
Davisson Germer Experiment: Matter Waves!

![Graph showing the relationship between wavelength and voltage](image)

\[\frac{h}{\sqrt{2meV}} = \lambda_{\text{predict}} \]

Excellent Agreement

Practical Application: Electron Microscope

![Practical application diagram](image)
Electron Microscope: Excellent Resolving Power

Electron Micrograph showing Bacteriophage viruses in E. Coli bacterium

The bacterium is ≈ 1 μ size

West Nile Virus extracted from a crow brain
Just What is Waving in Matter Waves?

For waves in an ocean, it's the water that "waves".
For sound waves, it's the molecules in medium.
For light it's the E & B vectors that oscillate.

Just What's "waving" in matter waves?
- It's the PROBABILITY OF FINDING THE PARTICLE that waves!
- Particle can be represented by a wave packet:
 - At a certain location (x)
 - At a certain time (t)
 - Made by superposition of many sinusoidal waves of different amplitudes, wavelengths λ, and frequency f
 - It's a "pulse" of probability in spacetime.

What Wave Does Not Describe a Particle

- What wave form can be associated with particle's pilot wave?
- A traveling sinusoidal wave? $y = A \cos (kx - \omega t + \Phi)$
- Since de Broglie "pilot wave" represents particle, it must travel with same speed as particle …(like me and my shadow)

Conflicts with Relativity \Rightarrow Unphysical

Single sinusoidal wave of infinite extent does not represent particle localized in space

Need "wave packets" localized spatially (x) and temporally (t)
How To Make Wave Packets: Just Beat it!

Superposition of two sound waves of slightly different frequencies f_1 and f_2, $f_1 \cong f_2$

Pattern of beats is a series of wave packets

Beat frequency $f_{\text{beat}} = f_2 - f_1 = \Delta f$

$\Delta f =$ range of frequencies that are superimposed to form the wave packet

Displacement

Addition of 2 Waves with slightly different λ and slightly different ω

Resulting wave's "displacement" $y = y_1 + y_2$

$y = A \left[\cos(k_1x - \omega_1t) + \cos(k_2x - \omega_2t) \right]$

Trigonometry: $\cos A + \cos B = 2 \cos \left(\frac{A+B}{2} \right) \cos \left(\frac{A-B}{2} \right)$

$\therefore y = 2A \left[\left(\cos \left(\frac{k_1 - k_2}{2} x - \frac{\omega_1 - \omega_2}{2} t \right) \right) \left(\cos \left(\frac{k_1 + k_2}{2} x - \frac{\omega_1 + \omega_2}{2} t \right) \right) \right]$

since $k_1 \cong k_2 \cong k_{\text{ave}}$, $\omega_2 \cong \omega_1 \cong \omega_{\text{ave}}$, $\Delta k \ll k$, $\Delta \omega \ll \omega$

$\therefore y = 2A \left[\cos \left(\frac{\Delta k}{2} x - \frac{\Delta \omega}{2} t \right) \right] \cos(kx - \omega t) = y = A' \cos(kx - \omega t)$,

A' oscillates in x,t; $A' = 2A \left[\cos \left(\frac{\Delta k}{2} x - \frac{\Delta \omega}{2} t \right) \right] =$ modulated amplitude

Phase Vel $V_p = \frac{k_{\text{ave}}}{\omega_{\text{ave}}}$

Group Vel $V_g = \frac{\Delta \omega}{\Delta k}$

$V_g : \text{Vel of envelope} = \frac{d \omega}{dk}$
Non-repeating wave packet can be created thru superposition of many waves of similar (but different) frequencies and wavelengths.

Waves to be added span the frequency range from \(f_0 - \frac{1}{2}\Delta f \) to \(f_0 + \frac{1}{2}\Delta f \).

The waves are all in phase at this instant of time.

The superposition of the many waves spanning a range of frequencies is a wave packet.

Wave Packet: Localization

Finite # of diff. Monochromatic waves always produce INFINITE sequence of repeating wave groups → can’t describe (localized) particle.

To make localized wave packet, add “infinite” # of waves with Well chosen Amplitude \(A \), Wave number \(k \) and ang. f frequency \(\omega \).

\[
\Psi(x,t) = \int A(k) e^{ikx-wt} dk
\]

\(A(k) \) = Amplitude distribution Fn

⇒ diff waves of diff \(k \) have different amplitudes \(A(k) \)

\(w = w(k) \), depends on type of wave, media

Group Velocity \(V_g = \frac{d\omega}{dk} \mid_{f_0} \)

localized
Group Velocity, Phase Velocity and Dispersion

In a Wave Packet: \(w = w(k) \)

Group Velocity \(V_g = \frac{d\omega}{dk} \)

Since \(V_p = w k \) (def) \(\Rightarrow w = kV_p \)

\[V_g = \left. \frac{d\omega}{dk} \right|_{k=k_0} + k \left. \frac{dV_p}{dk} \right|_{k=k_0} \]

usually \(V_p = V_g(\lambda) \)

Material in which \(V_p \) varies with \(\lambda \) are said to be Dispersive

Individual harmonic waves making a wave pulse travel at different \(V_p \) thus changing shape of pulse and become spread out

In non-dispersive media, \(V_g = V_p \); Example: EM waves in vacuum

Wave packet maintains its shape as it moves.

In dispersive media \(V_g \neq V_p \), depends on \(\frac{dV_p}{dk} \); shape changes with time

Example: Water wave, EM waves in a medium

Example: Water Wave packet With \(V_g = \frac{1}{2}V_p \)

Wave packet for which the group velocity=1/2 phase velocity

The \(\uparrow \), representing a point of constant phase for the dominant \(\lambda \), travels with \(V_p \)

The \(\Theta \) at center of group travels with group velocity (\(V_g \))
A Dispersive Wave Packet Moving Along X Axis

The O indicates position of the classical particle. The Wave packet spreads out in x & y directions since V_p of constituent waves depends on wavelength λ of the wave.

Group Velocity v_g of Matter Wave Packets

Consider An Electron:

- mass = m
- velocity = v
- momentum = p
- Energy $E = hf = \gamma mc^2$
- Wavelength $\lambda = \frac{h}{p}$
- $k = \frac{2\pi}{\lambda} \Rightarrow k = \frac{2\pi}{h} \gamma mv$

Group Velocity:

$$v_g = \frac{dv}{dk} = \frac{d(\omega f)}{dk} = \frac{2\pi v}{h[1-(\frac{\nu}{c})^2]^{\nu/2}}$$

$$V_g = \frac{d\nu}{dk} = \frac{d(\omega f)}{dk} = \frac{2\pi m}{h[1-(\frac{\nu}{c})^2]^{\nu/2}}$$

But velocity of individual waves making up the wave packet $V_p = \frac{W}{k} = \frac{c^2}{\nu} > c$! (not physical)
Wave Packets & Uncertainty Principles

- Distance ΔX between adjacent minima = $(X_2)_{\text{node}} - (X_1)_{\text{node}}$
- Define $X_1=0$ then phase diff from $X_1 \Rightarrow X_2 = \pi$ (similarly for $t_1 \Rightarrow t_2$)

Node at $y = 0 = 2A \cos \left(\frac{\Delta w}{2} t - \frac{\Delta k}{2} x\right)$, Examine x or t behavior

\Rightarrow in x: $\Delta k \cdot \Delta x = \pi \Rightarrow$ Need to combine many waves of diff k to make small Δx pulse

$\Delta x = \frac{\pi}{\Delta k}$, for small $\Delta x \rightarrow 0 \Rightarrow \Delta k \rightarrow \infty$ & Vice Versa

$\text{and in } t: \frac{\Delta w \cdot \Delta t}{\pi} = \pi \Rightarrow$ Need to combine many waves of diff ω to make small Δt pulse

$\Delta t = \frac{\pi}{\Delta \omega}$, for small $\Delta t \rightarrow 0 \Rightarrow \Delta \omega \rightarrow \infty$ & Vice Versa

Signal Transmission and Bandwidth Theory

- Short duration pulses are used to transmit digital info
 - Over phone line as brief tone pulses
 - Over satellite link as brief radio pulses
 - Over optical fiber as brief laser light pulses
- Regardless of type of wave or medium, any wave pulse must obey the fundamental relation
 \[\Delta \omega \Delta t \cong \pi \]
- Range of frequencies that can be transmitted are called bandwidth of the medium
- Shortest possible pulse that can be transmitted thru a medium is $\Delta t_{\text{min}} \cong \pi / \Delta \omega$
- Higher bandwidths transmits shorter pulses & allows high data rate
Wave Packets & The Uncertainty Principles of Subatomic Physics

in space x: \(\Delta k \cdot \Delta x = \pi \) \(\Rightarrow \) since \(k = \frac{2\pi}{\lambda} \), \(p = \frac{h}{\lambda} \)

\(\Rightarrow \Delta p \cdot \Delta x = \hbar / 2 \)

usually one writes \(\Delta p \cdot \Delta x \geq \hbar / 2 \) approximate relation

In time t : \(\Delta \omega \cdot \Delta t = \pi \) \(\Rightarrow \) since \(\omega = 2\pi f \), \(E = hf \)

\(\Rightarrow \Delta E \cdot \Delta t = \hbar / 2 \)

usually one writes \(\Delta E \cdot \Delta t \geq \hbar / 2 \) approximate relation

What do these inequalities mean physically?

Know the Error of Thy Ways: Measurement Error \(\rightarrow \Delta \)

• Measurements are made by observing something: length, time, momentum, energy
• All measurements have some (limited) precision…no matter the instrument used
• Examples:
 – How long is a desk? \(L = (5 \pm 0.1) \text{ m} = L \pm \Delta L \) (depends on ruler used)
 – How long was this lecture? \(T = (50 \pm 1) \text{ minutes} = T \pm \Delta T \) (depends on the accuracy of your watch)
 – How much does Prof. Sharma weigh? \(M = (1000 \pm 700) \text{ kg} = m \pm \Delta m \)
 • Is this a correct measure of my weight?
 – Correct (because of large error reported) but imprecise
 – My correct weight is covered by the (large) error in observation

Length Measure Voltage (or time) Measure
Measurement Error: \(x \pm \Delta x \)

- Measurement errors are unavoidable since the measurement procedure is an experimental one.
- True value of a measurable quantity is an abstract concept.
- In a set of repeated measurements with random errors, the distribution of measurements resembles a Gaussian distribution characterized by the parameter \(\sigma \) or \(\Delta \) characterizing the width of the distribution.

The Gauss, or Normal, Distribution

\[
G_{X,\sigma}(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.
\]

Measurement error large

Measurement error smaller

Measurement Error: \(x \pm \Delta x \)

- High precision
- Low precision

FWHM

HWHM

\(\Delta x \) or \(\sigma \)
Interpreting Measurements with random Error : Δ

True value

Will use $\Delta = \sigma$ interchangeably

Figure 5.12. The shaded area between $X \pm \sigma$ is the probability of a measurement within r standard deviations of X.

Where in the World is Carmen San Diego?

Carmen San Diego hidden inside a big box of length L

Suppose you can’t see thru the (blue) box, what is you best estimate of her location inside box (she could be anywhere inside the box)

Your best unbiased measure would be $x = \frac{L}{2} \pm \frac{L}{2}$

There is no perfect measurement, there are always measurement error
Wave Packets & Matter Waves

- What is the Wave Length of this wave packet?
 - made of waves with $\lambda - \Delta \lambda < \lambda < \lambda + \Delta \lambda$
 - De Broglie wavelength $\lambda = \frac{h}{p}$
 - \Rightarrow Momentum Uncertainty: $p - \Delta p < p < p + \Delta p$
 - Similarly for frequency ω or f
 - made of waves with $\omega - \Delta \omega < \omega < \omega + \Delta \omega$
 - Planck’s condition $E = hf = \frac{h\omega}{2}$
 - \Rightarrow Energy Uncertainty: $E - \Delta E < E < E + \Delta E$

Back to Heisenberg’s Uncertainty Principle

- $\Delta x, \Delta p \geq \frac{h}{4\pi} \Rightarrow$ If the measurement of the position of a particle is made with a precision Δx and a SIMULTANEOUS measurement of its momentum p_x in the X direction, then the product of the two uncertainties (measurement errors) can never be smaller than $\pm\Delta x, \Delta p \geq \frac{h}{4\pi}$ irrespective of how precise the measurement tools.

- $\Delta E, \Delta t \geq \frac{h}{4\pi} \Rightarrow$ If the measurement of the energy E of a particle is made with a precision ΔE and it took time Δt to make that measurement, then the product of the two uncertainties (measurement errors) can never be smaller than $\pm\Delta E, \Delta t \geq \frac{h}{4\pi}$ irrespective of how precise the measurement tools.

These rules arise from the way we constructed the wave packets describing Matter “pilot” waves.

Perhaps these rules are bogus, can we verify this with some physical picture??
Are You Experienced?

- What you experience is what you observe
- What you observe is what you measure
- No measurement is perfect, they all have measurement error: question is of the degree
 - Small or large Δ

- Uncertainty Principle and Breaking of Conservation Rules
 - Energy Conservation
 - Momentum Conservation

The Act of Observation (Compton Scattering)

Observations of particle motion by means of scattered illumination. When the incident wavelength is reduced to accommodate the size of the particle, the momentum transferred by the photon becomes large enough to disturb the observed motion.

Visible light illuminating a macroscopic object.

Act of observation disturbs the observed system

X ray illuminating an atomic electron

Observer
Compton Scattering: Shining light to observe electron

Photon scattering off an electron, Seeing the photon enters my eye

\[\lambda = \frac{h}{p} = \frac{hc}{E} = \frac{c}{f} \]

The act of Observation DISTURBS the object being watched, here the electron moves away from where it was originally.
Act of Watching: A Thought Experiment

- **Before collision**
 - Incident photon
 - Electron

- **After collision**
 - Scattered photon
 - Recoiling electron

Observed Diffraction pattern

- Phoens that pass thru this region of lens

Eye

Diffraction By a Circular Aperture (Lens)

See Resnick, Halliday Walker 6th Ed (on S.Reserve), Ch 37, pages 898-900

Diffracted image of a point source of light thru a lens (circular aperture of size d)

First minimum of diffraction pattern is located by

\[
\sin \theta = 1.22 \frac{\lambda}{d}
\]

See previous picture for definitions of \(\theta, \lambda, d \)
Resolving Power of Light Thru a Lens

Image of 2 separate point sources formed by a converging lens of diameter d, ability to resolve them depends on λ & d because of Inherent diffraction in image formation.

\[
\Delta x = \frac{\lambda}{2 \sin \theta}
\]

θ depends on lens radius d.

Putting it all together: Act of Observing an Electron

- Incident light (p, λ) scatters off electron
- To be collected by lens γ must scatter thru angle α
 - $-\theta \leq \alpha \leq \theta$
- Due to Compton scatter, electron picks up momentum
 \[p_x, p_y \]
- \[\frac{h}{\lambda} \sin \theta \leq p_x \leq \frac{h}{\lambda} \sin \theta \]
- Electron momentum uncertainty is
 \[\Delta p \approx \frac{-2h}{\lambda} \sin \theta \]
- After passing thru lens, photon diffracts, lands somewhere on screen, image (of electron) is fuzzy
- How fuzzy? Optics says shortest distance between two resolvable points is:
 \[\Delta x = \frac{\lambda}{2 \sin \theta} \]
- Larger the lens radius, larger the θ => better resolution

\[
\Delta p \cdot \Delta x \geq \frac{\hbar}{2}
\]
Aftermath of Uncertainty Principle

- Deterministic (Newtonian) physics topples over
 - Newton’s laws told you all you needed to know about trajectory of a particle
 - Apply a force, watch the particle go!
 - Know every thing! X, v, p, F, a
 - Can predict exact trajectory of particle if you had perfect device
 - No so in the subatomic world!
 - Of small momenta, forces, energies
 - Can’t predict anything exactly
 - Can only predict probabilities
 - There is so much chance that the particle landed here or there
 - Can’t be sure!....cognizant of the errors of thy observations

All Measurements Have Associated Errors

- If your measuring apparatus has an intrinsic inaccuracy (error) of amount Δp
- Then results of measurement of momentum p of an object at rest can easily yield a range of values accommodated by the measurement imprecision:
 - $-\Delta p \leq p \leq \Delta p$: you will measure any of these values for the momentum of the particle

- Similarly for all measurable quantities like X, t, Energy!
Matter Diffraction & Uncertainty Principle

Momentum measurement beyond slit show particle not moving exactly in Y direction, develops a X component Of motion $-\Delta p_x \leq p_x \leq \Delta p_x$ with $\Delta p_x = \frac{h}{2\pi a}$

Particle at Rest Between Two Walls

Object of mass M at rest between two walls originally at infinity.

What happens to our perception of George’s momentum as the walls are brought in?

On average, measure $<p> = 0$
but there are quite large fluctuations!

Width of Distribution $= \Delta P$

$\Delta P = \sqrt{(P^2)_{av} - (P_{av})^2}$; $\Delta P \sim \frac{h}{L}$
A bound “particle” is one that is confined in some finite region of space.

One of the cornerstones of Quantum mechanics is that bound particles can not be stationary – even at Zero absolute temperature!

There is a non-zero limit on the kinetic energy of a bound particle.

Implications of Uncertainty Principles

Matter-Antimatter Collisions and Uncertainty Principle

Look at Rules of Energy and Momentum Conservation: Are they?

\[E_{\text{before}} = mc^2 + mc^2 \quad \text{and} \quad E_{\text{after}} = 2mc^2 \]

\[P_{\text{before}} = 0 \quad \text{but since photon produced in the annihilation} \rightarrow P_{\text{after}} = 2mc ! \]

Such violation are allowed but must be consumed instantaneously! Hence the name “virtual” particles.
Fluctuations In The Vacuum: Breaking Energy Conservation Rules

Vacuum, at any energy, is bubbling with particle creation and annihilation

\[\Delta E \approx \frac{\hbar}{2\pi} \]

implies that you can (in principle) pull out an elephant + anti-elephant from NOTHING (Vacuum) but for a very, very short time \(\Delta t \)!!

How Much Time:
\[\Delta t = \frac{\hbar}{2Mc^2} \]

How cool is that!

Strong Force Within Nucleus ➔ Exchange Force and Virtual Particles

Repulsive force

- Strong Nuclear force can be modeled as exchange of virtual particles called \(\pi^\pm \) mesons by nucleons (protons & neutrons)
- \(\pi^\pm \) mesons are emitted by proton and reabsorbed by a neutron
- The short range of the Nuclear force is due to the "large" mass of the exchanged meson
- \(M_{\pi} = 140 \text{ MeV}/c^2 \)
Range of Nuclear Exchange Force

How long can the emitted virtual particle last?
\[\Delta E \times \Delta t \geq \hbar \]
The virtual particle has rest mass + kinetic energy
\[\Rightarrow \text{Its energy } \Delta E \geq Mc^2 \]
\[\Rightarrow \text{Particle can not live for more than } \Delta t \leq \hbar / Mc^2 \]
Range R of the meson (and thus the exchange force)
\[R = c\Delta t = \frac{ch}{Mc^2} = \frac{\hbar}{Mc} \]

For \(M=140 \text{ MeV}/c^2 \) \[R = \frac{1.06 \times 10^{-34} \text{ J.s}}{(140 \text{MeV}/c^2) \times c^2 \times (1.60 \times 10^{-13} \text{ J}/\text{MeV})} \]
\[R = 1.4 \times 10^{-15} \text{ m} = 1.4 \text{ fm} \]

Subatomic Cinderella Act

- Neutron emits a charged pion for a time \(\Delta t \) and becomes a (charged) proton
- After time \(\Delta t \), the proton reabsorbs charged pion particle (\(\pi^- \)) to become neutron again
- But in the time \(\Delta t \) that the positive proton and \(\pi^- \) particle exist, they can interact with other charged particles
- After time \(\Delta t \) strikes, the Cinderella act is over!
Quantum Behavior: Richard Feynman

See Chapters 1 & 2 of Feynman Lectures in Physics Vol III
Or Six Easy Pieces by Richard Feynman: Addison Wesley Publishers

An Experiment with Indestructible Bullets

- erratic machine gun sprays in all directions
- made of armor plate
- sandbox
- Prob. when one or other hole open
- Probability P_{12} when both holes open?

$P_{12} = P_1 + P_2$
An Experiment With Water Waves

Measure Intensity of Water Waves
(by measuring detector displacement)

Intensity I_{12} when
Both holes open

Intensity I_{12} when
One or other
hole open

δ

\cos

$\sqrt{I_1 I_2}$

$\frac{1}{2}$

$I_{12} = |h_1 + h_2|^2 = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$

Wave Phenomena → Interference and Diffraction
Interference Phenomenon in Waves

\[n\lambda = d \sin \theta \]

An Experiment With (indestructible) Electrons

\[P_{12} \neq P_1 + P_2 \]
Interference Pattern of Electrons When Both slits open

Growth of 2-slit Interference pattern thru different exposure periods photographic plate (screen) struck by:

- 28 electrons
- 10,000 electrons
- 1000 electrons
- 10^6 electrons

White dots simulate presence of electron
No white dots at the place of destructive Interference (minima)

Watching Which Hole Electron Went Thru By Shining Intense Light

Probability P_{12} when both holes open and I see which hole the electron came thru

P'_{12} = P'_{1} + P'_{2}
Watching electrons with dim light: See light flash & hear detector clicks

Low intensity light → Not many photons incident
Maybe a photon hits the electron (See flash, hear click)
Or Maybe the photon misses the electron (no flash, only click)

Probability \(P_{12} \) when both holes open and I see the flash and hear the detector click

\[P'_{12} = P'_{1} + P'_{2} \]

Watching electrons in dim light: don’t see flash but hear detector clicks

Probability \(P_{12} \) when both holes open and I don’t see the flash but hear the detector click

\[P_{12} = |A_1|^2 + |A_2|^2 \]
Compton Scattering: Shining light to observe electron

\[\lambda = \frac{h}{p} = \frac{hc}{E} = \frac{c}{f} \]

The act of Observation DISTURBS the object being watched, here the electron moves away from where it was originally.

Watching Electrons With Light of \(\lambda \gg \text{slit size but High Intensity} \)

Probability \(P_{12} \) when both holes open but can't tell, from the location of flash, which hole the electron came thru.
Why Fuzzy Flash? → Resolving Power of Light

Image of 2 separate point sources formed by a converging lens of diameter d, ability to resolve them depends on λ & d because of the Inherent diffraction in image formation.

$$\text{Resolving power } \Delta x = \frac{\lambda}{2\sin \theta}$$

Summary of Experiments So Far

1. Probability of an event is given by the square of amplitude of a complex # Ψ: Probability Amplitude

2. When an event occurs in several alternate ways, probability amplitude for the event is sum of probability amplitudes for each way considered separately. There is interference:

 $$\Psi = \Psi_1 + \Psi_2$$

 $$P_{12} = |\Psi_1 + \Psi_2|^2$$

3. If an experiment is done which is capable of determining whether one or other alternative is actually taken, probability for event is just sum of each alternative

 - Interference pattern is LOST!
Is There No Way to Beat Uncertainty Principle?

• How about NOT watching the electrons!
• Let’s be a bit crafty !!
• Since this is a Thought experiment → ideal conditions
 – Mount the wall on rollers, put a lot of grease → frictionless
 – Wall will move when electron hits it
 – Watch recoil of the wall containing the slits when the electron
 hits it
 – By watching whether wall moved up or down I can tell
 •
 •

• Will my ingenious plot succeed?

Measuring The Recoil of The Wall → Not Watching Electron !
Losing Out To Uncertainty Principle

- To measure the RECOIL of the wall ⇒
 - must know the initial momentum of the wall before electron hit it
 - Final momentum after electron hits the wall
 - Calculate vector sum ⇒ recoil
- Uncertainty principle :
 - To do this ⇒ \(\Delta P = 0 \) ⇒ \(\Delta X = \infty \) [can not know the position of wall exactly]
 - If don’t know the wall location, then down know where the holes are
 - Holes will be in different place for every electron that goes thru
 - The center of interference pattern will have different (random) location for each electron
 - Such random shift is just enough to Smear out the pattern so that no interference is observed!

Summary

- Probability of an event in an ideal experiment is given by the square of the absolute value of a complex number \(\Psi \) which is call probability amplitude
 - \(P = \text{probability} \)
 - \(\Psi = \text{probability amplitude}, \ P=|\Psi|^2 \)
- When an even can occur in several alternative ways, the probability amplitude for the event is the sum of the probability amplitudes for each way considered separately. There is interference:
 - \(\Psi = \Psi_1 + \Psi_2 \)
 - \(P=|\Psi_1 + \Psi_2|^2 \)
- If an experiment is performed which is capable of determining whether one or other alternative is actually taken, the probability of the event is the sum of probabilities for each alternative. The interference is lost: \(P = P_1 + P_2 \)
The Lesson Learnt

• In trying to determine which slit the particle went through, we are examining particle-like behavior
• In examining the interference pattern of electron, we are using wave like behavior of electron

Bohr’s Principle of Complementarity:
It is not possible to simultaneously determine physical observables in terms of both particles and waves

The Bullet Vs The Electron: Each Behaves the Same Way
Quantum Mechanics of Subatomic Particles

- Act of Observation destroys the system (No watching!)
- If can’t watch then all conversations can only be in terms of Probability P
- Every particle under the influence of a force is described by a Complex wave function Ψ(x,y,z,t)
- Ψ is the ultimate DNA of particle: contains all info about the particle under the force (in a potential e.g. Hydrogen)
- Probability of per unit volume of finding the particle at some point (x,y,z) and time t is given by
 - \[P(x,y,z,t) = |Ψ(x,y,z,t)|^2 \]
- When there are more than one path to reach a final location then the probability of the event is
 - \[Ψ = Ψ_1 + Ψ_2 \]
 - \[P = |Ψ^*Ψ| = |Ψ_1|^2 + |Ψ_2|^2 + 2 |Ψ_1||Ψ_2| \cos φ \]
Wave Function of “Stuff” & Probability Density

- Although not possible to specify with certainty the location of particle, it is possible to assign probability $P(x) dx$ of finding particle between x and $x+dx$
- $P(x) dx = |\Psi(x,t)|^2 dx$
- E.g. intensity distribution in light diffraction pattern is a measure of the probability that a photon will strike a given point within the pattern

\Psi: The Wave function Of A Particle

- The particle must be somewhere

 $\int_{-\infty}^{\infty} |\psi(x,t)|^2 dx = 1$

- Any Ψ satisfying this condition is NORMALIZED
- Prob of finding particle in finite interval

 $P(a \leq x \leq b) = \int_a^b \psi^*(x,t) \psi(x,t) dx$

- Fundamental aim of Quantum Mechanics
 - Given the wavefunction at some instant (say $t=0$) find Ψ at some subsequent time t
 - $\Psi(x,t=0) \rightarrow \Psi(x,t)$ …evolution
 - Think of a probabilistic view of particle’s “newtonian trajectory”
 - We are replacing Newton’s 2nd law for subatomic systems

The Wave Function is a mathematical function that describes a physical object → Wave function must have some rigorous properties:

- Ψ must be finite
- Ψ must be continuous fn of x,t
- Ψ must be single-valued
- Ψ must be smooth fn → $\frac{d\psi}{dx}$ must be continuous

WHY?
Bad Wave Functions Of Physical Systems: You Decide Why

?

A Simple Wave Function: Free Particle

- Imagine a free particle of mass \(m \), momentum \(p \) and \(K = p^2/2m \)
- Under no force, no attractive or repulsive potential to influence it
- Particle is where it wants: can be anywhere \([-\infty \leq x \leq +\infty]\)
 - Has no relationship, no mortgage, no quiz, no final exam… it’s essentially a bum!
 - How to describe a quantum mechanical bum?
 - \(\Psi(x,t) = Ae^{i(kx-\omega t)} = A(\cos(kx-\omega t) + i \sin(kx-\omega t)) \)

\[k = \frac{p}{\hbar} ; \quad \omega = \frac{E}{\hbar} \]

For non-relativistic particles

\[E = \frac{p^2}{2m} \Rightarrow \omega(k) = \frac{\hbar k^2}{2m} \]

Has definite momentum and energy but location unknown!
Wave Function of Different Kind of Free Particle: Wave Packet

Sum of Plane Waves:
\[\Psi(t,0) = \int a(k) e^{ikx} dk \]
\[\Psi(x,t) = \int a(k) e^{ikx - \omega t} dk \]

Wave Packet initially localized in \(\Delta x \), \(\Delta t \) undergoes dispersion

Combine many free waves to create a localized wave packet (group)

The more you know now, The less you will know later Why?

Spreading is due to DISPERSION resulting from the fact that phase velocity of individual waves making up the packet depends on \(\lambda(k) \).

Normalization Condition: Particle Must be Somewhere

Example: \(\psi(x,0) = Ce^{\frac{|x|}{x_0}} \), \(C \) & \(x_0 \) are constants
This is a symmetric wavefunction with diminishing amplitude
The Amplitude is maximum at \(x = 0 \) ⇒ Probability is max too

Normalization Condition: How to figure out \(C \)?

A real particle must be somewhere: Probability of finding particle is finite
\[P(-\infty \leq x \leq +\infty) = \int_{-\infty}^{+\infty} |\psi(x,0)|^2 dx = \int_{-\infty}^{+\infty} C^2 e^{-\frac{|x|^2}{x_0^2}} dx = 1 \]
\[\Rightarrow 1 = 2C^2 \int_{0}^{\infty} e^{-\frac{x^2}{2x_0^2}} dx = 2C^2 \left[\frac{x_0}{2} \right] = C^2 x_0 \]
\[\Rightarrow \psi(x,0) = \frac{1}{\sqrt{x_0}} e^{\frac{|x|}{x_0}} \]
Probability of finding particle within a certain location $x \pm \Delta x$

\[
P(-x_0 \leq x \leq +x_0) = \int_{-x_0}^{+x_0} |\psi(x, 0)|^2 \, dx = \int_{-x_0}^{+x_0} C^2 e^{-2|x|/x_0} \, dx
\]

\[
= 2C^2 \left[\frac{x_0}{2} \right] \left[1 - e^{-2} \right] = \left[1 - e^{-2} \right] = 0.865 \Rightarrow 87\%
\]

Where Do Wave Functions Come From?

- Are solutions of the time dependent Schrödinger Differential Equation (inspired by Wave Equation seen in 2C)

\[
\frac{-\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + U(x)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}
\]

- Given a potential $U(x)$ \(\Rightarrow\) particle under certain force

\[
F(x) = -\frac{\partial U(x)}{\partial x}
\]
Introducing the Schrödinger Equation

Consider for simplicity just a one-dimensional system

\[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x, t)}{\partial x^2} + U(x) \Psi(x, t) = i\hbar \frac{\partial \Psi(x, t)}{\partial t}\]

- \(U(x)\) = characteristic Potential of the system
- Different potential for different types of forces
- Hence different solutions for the Schrödinger Equation
- \(\rightarrow\) characteristic wavefunctions for a particular \(U(x)\)

Schrödinger Equation in 1, 2, 3 dimensional systems

1-dimension

\[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x, t)}{\partial x^2} + U(x) \Psi(x, t) = i\hbar \frac{\partial \Psi(x, t)}{\partial t}\]

2-dimension

\[-\frac{\hbar^2}{2m} \left[\frac{\partial^2 \Psi(x, y, t)}{\partial x^2} + \frac{\partial^2 \Psi(x, y, t)}{\partial y^2} \right] + U(x, y) \Psi(x, y, t) = i\hbar \frac{\partial \Psi(x, y, t)}{\partial t}\]

3-dimension

\[-\frac{\hbar^2}{2m} \left[\frac{\partial^2 \Psi(x, y, z, t)}{\partial x^2} + \frac{\partial^2 \Psi(x, y, z, t)}{\partial y^2} + \frac{\partial^2 \Psi(x, y, z, t)}{\partial z^2} \right] + U(x, y, z) \Psi(x, y, z, t) = i\hbar \frac{\partial \Psi(x, y, z, t)}{\partial t}\]
Schrodinger Wave Equation in Quantum Mechanics

Wavefunction ψ which is a sol. of the Sch. Equation embodies all modern physics experienced/learnt so far:

$$E = hf, \quad p = \frac{h}{\lambda}, \quad \Delta x \Delta p \sim h, \quad \Delta E \Delta t \sim h,$$

quantization etc

Schrodinger Equation is a Dynamical Eq.:

$$\psi(x,0) \rightarrow \text{Force (potential)} \rightarrow \psi(x,t)$$

Evolves the System as a function of space-time

The Schrodinge much like Newton's Eq propogates the system forward & backward in time:

$$\psi(x,\delta t) = \psi(x,0) \pm \left[\frac{d\psi}{dt} \right]_{t=0} \delta t$$

Where does it come from ?? ..."First Principles"

......no real "derivation" exists............

Time Independent S. Equation

Sometimes (depending on the character of the Potential $U(x,t)$)

The Wave function is factorizable: can be broken up

$$\Psi(x,t) = \psi(x) \phi(t)$$

Example: Plane Wave $\Psi(x,t) = e^{i(kx-\omega t)} = e^{ikx}e^{-\omega t}$

In such cases, use separation of variables to get:

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) \phi(t) = i\hbar \frac{\partial \psi(x)}{\partial t} \frac{\partial \phi(t)}{\partial t}$$

Divide throughout by $\Psi(x,t) = \psi(x)\phi(t)$

$$\Rightarrow -\frac{\hbar^2}{2m} \frac{1}{\psi(x)} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) = i\hbar \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t}$$

LHS is a function of x; RHS is fn of t

x and t are independent variables, hence:

$$\Rightarrow \text{RHS} = \text{LHS} = \text{Constant} = E$$
Factorization Condition For Wave Function Leads to:

\[
-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x)\psi(x) = E\psi(x)
\]

\[
i\hbar \frac{\partial \phi(t)}{\partial t} = E\phi(t)
\]

What is the Constant E? How to Interpret it?

Back to a Free particle:

\[
\Psi(x,t) = Ae^{ikx}e^{-iEt}, \quad \psi(x) = Ae^{ikx}
\]

\[
U(x,t) = 0
\]

Plug it into the Time Independent Schrödinger Equation (TISE) \(\Rightarrow\)

\[
-\frac{\hbar^2}{2m} \frac{d^2(Ae^{ikx})}{dx^2} + 0 = E Ae^{ikx} \Rightarrow E = \frac{\hbar^2 k^2}{2m} = \frac{p^2}{2m} = (NR\ Energy)
\]

Stationary states of the free particle: \(\Psi(x,t) = \psi(x)e^{-iEt}\)

\[
\Rightarrow |\Psi(x,t)|^2 = |\psi(x)|^2
\]

Probability is static in time \(t\), character of wave function depends on \(\psi(x)\).

Schrödinger Eqn: Stationary State Form

• Recall \(\Rightarrow\) when potential does not depend on time explicitly
 – \(U(x,t) = U(x)\) only…we used separation of \(x,t\) variables to simplify
 • \(\Psi(x,t) = \psi(x)\phi(t)\)
 • broke S. Eq. into two: one with \(x\) only and another with \(t\) only

\[
-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x)\psi(x) = E\psi(x)
\]

\[
\Psi(x,t) = \psi(x)\phi(t)
\]

How to put Humpty-Dumpty back together? e.g. to say how to go from an expression of \(\psi(x)\) \(\Rightarrow\) \(\Psi(x,t)\) which describes time-evolution of the overall wave function
Schroedinger Eqn: Stationary State Form

Since \(\frac{d}{dt}\left[\ln f(t) \right] = \frac{1}{f(t)} \frac{df(t)}{dt} \)

\[\ln \left(\frac{E\phi(t)}{\hbar} \right) = \int_0^t \frac{1}{\phi(t)} \frac{E\phi(t)}{i\hbar} \, dt \]

and integrate both sides w.r.t. time

\[\int_0^t \frac{1}{\phi(t)} \frac{E\phi(t)}{i\hbar} \, dt = \int_0^t \frac{1}{\phi(t)} \frac{E\phi(t)}{i\hbar} \, dt \]

\[\therefore \ln \phi(t) - \ln \phi(0) = - \frac{iE}{\hbar} t, \text{ now exponentiate both sides} \]

\[\Rightarrow \phi(t) = \phi(0)e^{-\frac{iE}{\hbar} t}; \phi(0) = \text{constant= initial condition} = 1 \text{ (e.g)} \]

\[\Rightarrow \phi(t) = e^{-\frac{iE}{\hbar} x} \text{ & Thus } \Psi(x,t) = \psi(x) e^{-\frac{iE}{\hbar} t} \text{ where } E = \text{ energy of system} \]

A More Interesting Potential: Particle In a Box

Write the Form of Potential: Infinite Wall

\(U(x,t) = \infty; \ x \leq 0, \ x \geq L \)

\(U(x,t) = 0; \ 0 < X < L \)

- Classical Picture:
 - Particle dances back and forth
 - Constant speed, const KE
 - Average \(\langle P \rangle = 0 \)
 - No restriction on energy value
 - \(E = K + U = K + 0 \)
 - Particle can not exist outside box
 - Can’t get out because needs to borrow infinite energy to overcome potential of wall

What happens when the joker is subatomic in size??
Example of a Particle Inside a Box With Infinite Potential

(a) Electron placed between 2 set of electrodes C & grids G experiences no force in the region between grids, which are held at Ground Potential. However in the regions between each C & G is a repelling electric field whose strength depends on the magnitude of V.

(b) If V is small, then electron’s potential energy vs x has low sloping “walls”.

(c) If V is large, the “walls” become very high & steep becoming infinitely high for \(V \to \infty \).

(d) The straight infinite walls are an approximation of such a situation.

\(\psi(x) \) for Particle Inside 1D Box with Infinite Potential Walls

Why can’t the particle exist outside the box?

⇒ E Conservation

Inside the box, no force ⇒ \(U = 0 \) or constant (same thing)

\[
-\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + 0 = E \psi(x)
\]

\[
\frac{d^2 \psi(x)}{dx^2} = -k^2 \psi(x) ; \quad k^2 = \frac{2mE}{\hbar^2}
\]

or

\[
\frac{d^2 \psi(x)}{dx^2} + k^2 \psi(x) = 0
\]

← figure out what \(\psi(x) \) solves this diff eq.
\[\psi(x) \text{ for Particle Inside 1D Box with Infinite Potential Walls} \]

Need to figure out values of A, B: How to do that?

Apply BOUNDARY Conditions on the Wavefunction

Since \(\psi(x) \text{ must be continuous } \) everywhere

\[\Rightarrow \text{ match the wavefunction just outside box with} \]

the wavefunction value just inside the box

\[\Rightarrow \begin{align*}
\text{At } x = 0 & \Rightarrow \psi(x = 0) = 0 \\
\text{At } x = L & \Rightarrow \psi(x = L) = 0
\end{align*} \]

\[\therefore \psi(x = 0) = B = 0 \text{ (Continuity condition at } x = 0) \]

\[& \psi(x = L) = A \sin kL = 0 \text{ (Continuity condition at } x = L) \]

\[\Rightarrow kL = n\pi \Rightarrow k = \frac{n\pi}{L}, n = 1, 2, 3, \ldots \infty \]

So what does this say about Energy \(E \) ?

\[E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2} \]

Quantized (not Continuous)!

Quantized Energy levels of Particle in a Box

![Energy levels diagram](image-url)
What About the Wave Function Normalization?

The particle's Energy and Wavefunction are determined by a number \(n \).
We will call \(n \rightarrow \) Quantum Number, just like in Bohr's Hydrogen atom.

What about the wave functions corresponding to each of these energy states?

\[
\psi_n = A \sin(kx) = A \sin\left(\frac{n\pi x}{L}\right) \quad \text{for} \quad 0 < x < L
\]
\[
= 0 \quad \text{for} \quad x \geq 0, \ x \geq L
\]

Normalized Condition:

\[
1 = \frac{1}{L} \int_0^L \psi^*_n \psi_n \, dx = A^2 \int_0^L \sin^2\left(\frac{n\pi x}{L}\right) \, dx
\]

Use \(2\sin^2\theta = 1 - 2\cos2\theta \)

\[
1 = A^2 \int_0^L \left(1 - \cos\left(\frac{2n\pi x}{L}\right)\right) \, dx \quad \text{and since} \quad \int \cos \theta = \sin \theta
\]

\[
1 = \frac{A^2}{2} L \quad \Rightarrow \quad A = \sqrt{\frac{2}{L}}
\]

So \(\psi_n = \sqrt{\frac{2}{L}} \sin(kx) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) \) ...What does this look like?

Wave Functions: Shapes Depend on Quantum # \(n \)

Wave Function

Probability \(P(x) \): Where the particle likely to be

Zero Prob
Where in The World is Carmen San Diego?

- We can only guess the probability of finding the particle somewhere in x
 - For $n=1$ (ground state) particle most likely at $x = L/2$
 - For $n=2$ (first excited state) particle most likely at $L/4, 3L/4$
 - Prob. Vanishes at $x = L/2 & L$
 - How does the particle get from just before $x=L/2$ to just after?
 - QUIT thinking this way, particles don’t have trajectories
 - Just probabilities of being somewhere

Classically, where is the particle most Likely to be: Equal prob of being anywhere inside the Box
NOT SO says Quantum Mechanics!

Remember Sesame Street?

This particle in the box is brought to you by the letter n

Its the Big Boss Quantum Number
The QM Prob. of Finding Particle in Some Region in Space

Consider \(n = 1 \) state of the particle

Ask: What is \(P \left(\frac{L}{4} \leq x \leq \frac{3L}{4} \right) ? \)

\[
P = \int_{\frac{L}{4}}^{\frac{3L}{4}} \left| \psi \right|^2 dx = \frac{2}{L} \int_{\frac{L}{4}}^{\frac{3L}{4}} \sin^2 \frac{\pi x}{L} dx = \left(\frac{2}{L} \right) \left[\frac{1}{2} \right] \left(1 - \cos \frac{2\pi x}{L} \right) dx
\]

\[
P = \frac{1}{L} \left[\frac{L}{2} \right] \left(\frac{L}{2\pi} \sin \frac{2\pi x}{L} \right)^{3L/4} = \frac{1}{2} \left[\frac{1}{2\pi} \right] \left(\sin \frac{2\pi}{L} \cdot \frac{3L}{4} - \sin \frac{2\pi}{L} \cdot \frac{L}{4} \right)
\]

\[
P = \frac{1}{2} \left[\frac{1}{2\pi} \right] (-1 - 1) = 0.818 \Rightarrow 81.8\%
\]

Classically \(\Rightarrow 50\% \) (equal prob over half the box size)

\(\Rightarrow \) Substantial difference between Classical & Quantum predictions

When The Classical & Quantum Pictures Merge: \(n \rightarrow \infty \)

But one issue is irreconcilable:

Quantum Mechanically the particle can not have \(E = 0 \)

This is a direct consequence of the Uncertainty Principle

The particle moves around with KE inversely proportional to the length of the (1D) Box
Finite Potential Barrier

- There are no Infinite Potentials in the real world
 - Imagine the cost of a battery with infinite potential difference
 - Will cost infinite $ sum + not available at Radio Shack
- Imagine a realistic potential: Large U compared to KE but not infinite

Classical Picture: A bound particle (no escape) in 0 < x < L
Quantum Mechanical Picture: Use $\Delta E \cdot \Delta t \leq \hbar/2\pi$
Particle can leak out of the Box of finite potential $P(|x| > L) \neq 0$

Finite Potential Well

\[
\frac{-\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + U \psi(x) = E \psi(x)
\]

\[
\Rightarrow \frac{d^2 \psi(x)}{dx^2} = \frac{2m}{\hbar^2} (U - E) \psi(x)
\]

\[
= \alpha^2 \psi(x); \quad \alpha = \sqrt{\frac{2m(U-E)}{\hbar^2}}
\]

General Solutions:

\[
\psi(x) = Ae^{i\alpha x} + Be^{-i\alpha x}
\]

 Require finiteness of $\psi(x)$

\[
\Rightarrow \psi(x) = Ae^{i\alpha x} \quad \text{......} x < 0 \quad (\text{region I})
\]

\[
\psi(x) = Ae^{-i\alpha x} \quad \text{......} x > L \quad (\text{region III})
\]

Again, coefficients A & B come from matching conditions at the edge of the walls (x = 0, L)
But note that wave fn at $\psi(x)$ at (x = 0, L) ≠ 0!! (why?)
Further require Continuity of $\psi(x)$ and $\frac{d\psi(x)}{dx}$
These lead to rather different wave functions
Finite Potential Well: Particle can Burrow Outside Box!

Particle can be outside the box but only for a time $\Delta t \approx \frac{\hbar}{\Delta E}$

$\Delta E = \text{Energy particle needs to borrow to get outside} = U - E + KE$

The Cinderella act (of violating energy conservation) can't last very long

Particle must hurry back (can't be caught with its hand inside the cookie-jar)

Penetration Length $\delta = \frac{1}{\alpha} = \frac{\hbar}{\sqrt{2m(U-E)}}$

If $U \gg E \Rightarrow$ Tiny penetration

If $U \to \infty \Rightarrow \delta \to 0$
Finite Potential Well: Particle can Burrow Outside Box

Penetration Length $\delta = \frac{1}{\alpha} \frac{h}{\sqrt{2m(U-E)}}$

- If $U \gg E \Rightarrow$ Tiny penetration
- If $U \to \infty \Rightarrow \delta \to 0$

$$E_n = \frac{n^2\pi^2h^2}{2m(L + 2\delta)^2}, \quad n = 1, 2, 3, 4...$$

When $E=U$ then solutions blow up

\Rightarrow Limits to number of bound states ($E_n < U$)

When $E>U$, particle is not bound and can get either reflected or transmitted across the potential "barrier"

Measurement Expectation: Statistics Lesson

- Ensemble & probable outcome of a single measurement or the average outcome of a large # of measurements

$$< x > = \frac{n_1x_1 + n_2x_2 + n_3x_3 + ... + n_xx_n}{n_1 + n_2 + n_3 + ... + n} = \frac{\sum_{i=1}^{n} n_i x_i}{N} = \frac{\int_{-\infty}^{\infty} xP(x)dx}{\int_{-\infty}^{\infty} P(x)dx}$$

For a general $f_n f(x)$

$$< f(x) > = \frac{\sum_{i=1}^{n} n_i f(x_i)}{N} = \frac{\int_{-\infty}^{\infty} \psi^*(x)f(x)\psi(x)dx}{\int_{-\infty}^{\infty} P(x)dx}$$

Sharpness of A Distr:

Scatter around average

$$\sigma = \sqrt{\frac{\sum(x_i - \bar{x})^2}{N}}$$

σ = small \Rightarrow Sharp distr.

Uncertainty $\Delta X = \sigma$
Particle in the Box, \(n=1 \), find \(<x>\) & \(\Delta x \)?

\[
\psi(x) = \frac{2}{\sqrt{L}} \sin \left(\frac{\pi}{L} x \right)
\]

\[
<x> = \int_0^L x \left[\frac{2}{\sqrt{L}} \sin \left(\frac{\pi}{L} x \right) \right] dx
\]

\[
= \frac{2}{L} \int_0^L x \sin^2 \left(\frac{\pi}{L} x \right) dx, \text{ change variable } \theta = \left(\frac{\pi}{L} x \right)
\]

\[
\Rightarrow <x> = \frac{2}{L} \int_0^{\pi/2} \theta \sin^2 \theta \cdot \text{ use } \sin^2 \theta = \frac{1}{2}(1-\cos \theta)
\]

\[
\Rightarrow <x> = \frac{2L}{2\pi^2} \left[\int_0^\theta d\theta - \int_0^\theta \cos 2\theta d\theta \right] \text{ use } \int udv = uv - \int vdu
\]

\[
\Rightarrow <x> = \frac{L}{\pi^2} \left(\frac{\pi^2}{2} \right) = \frac{L}{2} \text{ (same result as from graphing } \psi^2(x))
\]

Similarly \(<x^2> = \frac{1}{\pi} \int_0^L x^2 \sin^2 \left(\frac{\pi}{L} x \right) dx = \frac{L^2}{3} - \frac{L^2}{2\pi^2}
\]

and \(\Delta x = \sqrt{<x^2> - <x>^2} = \frac{L^2}{\sqrt{6}} - \frac{L^2}{2\pi^2} = 0.18L \)

\(\Delta x = 20\% \) of \(L \), Particle not sharply confined in Box

Expectation Values & Operators: More Formally

- **Observable**: Any particle property that can be measured
 - \(X, P, KE, E \) or some combination of them, e.g., \(x^2 \)
 - How to calculate the probable value of these quantities for a QM state?

- **Operator**: Associates an **operator** with each observable
 - Using these Operators, one calculates the average value of that Observable
 - The Operator acts on the Wavefunction (Operand) & extracts info about the Observable in a straightforward way \(\Rightarrow \) gets Expectation value for that observable.

\[
\langle Q \rangle = \int \psi^* (x,t) \hat{Q} \psi (x,t) dx
\]

\(\hat{Q} \) is the observable, \(\hat{Q} \) is the operator
\& \(\langle Q \rangle \) is the Expectation value

Examples: \([X] = x \), \([P] = \frac{h}{i} \frac{d}{dx} \)

\([K] = \frac{[P]^2}{2m} = \frac{\hbar^2}{2m} \frac{d^2}{dx^2} \) , \([E] = i\hbar \frac{\partial}{\partial t} \)
<table>
<thead>
<tr>
<th>Observable</th>
<th>Symbol</th>
<th>Associated Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>momentum</td>
<td>(\dot{p})</td>
<td>(\frac{\hbar}{i} \frac{\partial}{\partial x})</td>
</tr>
<tr>
<td>potential energy</td>
<td>(U)</td>
<td>(U(x))</td>
</tr>
<tr>
<td>kinetic energy</td>
<td>(K)</td>
<td>(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2})</td>
</tr>
<tr>
<td>hamiltonian</td>
<td>(H)</td>
<td>(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(x))</td>
</tr>
<tr>
<td>total energy</td>
<td>(E)</td>
<td>(i\hbar \frac{\partial}{\partial t})</td>
</tr>
</tbody>
</table>

Operators → Information Extractors

\[[p] \text{ or } \dot{p} = \frac{\hbar}{i} \frac{d}{dx} \]
Momentum Operator

gives the value of average mometum in the following way:

\[\langle p \rangle = \int_{-\infty}^{\infty} \psi^* (x) [p] \psi (x) dx = \int_{-\infty}^{\infty} \psi^* (x) \left(\frac{\hbar}{i} \frac{d\psi}{dx} \right) dx \]

Similarly:

\[[K] \text{ or } \dot{K} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \]
gives the value of average KE

\[\langle K \rangle = \int_{-\infty}^{\infty} \psi^* (x) [K] \psi (x) dx = \int_{-\infty}^{\infty} \psi^* (x) \left(-\frac{\hbar^2}{2m} \frac{d^2\psi (x)}{dx^2} \right) dx \]

Similarly

\[\langle U \rangle = \int_{-\infty}^{\infty} \psi^* (x) [U(x)] \psi (x) dx \]
: plug in the \(U(x) \) fn for that case

and \(\langle E \rangle = \int_{-\infty}^{\infty} \psi^* (x) [K + U (x)] \psi (x) dx = \int_{-\infty}^{\infty} \psi^* (x) \left(-\frac{\hbar^2}{2m} \frac{d^2\psi (x)}{dx^2} + U(x) \right) dx \)

Hamiltonian Operator \([H] = [K] + [U] \)

The Energy Operator \([E] = i\hbar \frac{\partial}{\partial t} \) informs you of the average energy
[H] & [E] Operators

- [H] is a function of x
- [E] is a function of t ……they are really different operators
- But they produce identical results when applied to any solution of the time-dependent Schrodinger Eq.

\[[H]\Psi(x,t) = [E]\Psi(x,t) \]

\[\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(x,t) \right] \Psi(x,t) = \left[i\hbar \frac{\partial}{\partial t}\right] \Psi(x,t) \]

- Think of S. Eq as an expression for Energy conservation for a Quantum system

Where do Operators come from? A touchy-feely answer

Example: \([p]\) The momentum Extractor (operator):

Consider as an example: Free Particle Wavefunction

\[\Psi(x,t) = Ae^{i(kx-\omega t)}; \quad k = \frac{2\pi}{\lambda}, \lambda = \frac{\hbar}{p} \Rightarrow k = \frac{p}{\hbar} \]

rewrite \(\Psi(x,t) = Ae^{\frac{ip}{\hbar}x} \); \(\frac{\partial^i\Psi(x,t)}{\partial x} = i\frac{p}{\hbar}Ae^{\frac{ip}{\hbar}x} \)

\[\Rightarrow \left[\hbar \frac{\partial}{i \partial x}\right] \Psi(x,t) = p \Psi(x,t) \]

So it is not unreasonable to associate \([p]= \left[\hbar \frac{\partial}{i \partial x}\right]\) with observable p
Example: Average Momentum of particle in box

- Given the symmetry of the 1D box, we argued last time that $\langle p \rangle = 0$.
 - Be lazy, when you can get away with a symmetry argument to solve a problem...do it & avoid the evil integration & algebra...but be sure!

$$
\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L} x\right) \quad \& \quad \psi_n^*(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L} x\right)
$$

$$
\langle p \rangle = \int_{-\infty}^{\infty} \psi^*(x) [p] \psi(x) dx = \int_{-\infty}^{\infty} \psi^* \left[-i \frac{d}{dx} \right] \psi dx
$$

$$
\langle p \rangle = \frac{\hbar}{i} \left[\frac{n\pi}{L} \right] \left(\sin \left(\frac{n\pi}{L} x \right) \cos \left(\frac{n\pi}{L} x \right) \right) dx
$$

Since $\int \sin ax \cos ax dx = \frac{1}{2a} \sin^2 ax$...here $a = \frac{n\pi}{L}$

$$
\Rightarrow \langle p \rangle = \frac{\hbar}{2L} \left[\sin \left(\frac{n\pi}{L} x \right) \right]_{-\infty}^{\infty} = 0 \text{ since } \sin^2(0) = \sin^2(n\pi) = 0
$$

We knew THAT before doing any math!

Quiz 1: What is the $\langle p \rangle$ for the Quantum Oscillator in its symmetric ground state
Quiz 2: What is the $\langle p \rangle$ for the Quantum Oscillator in its asymmetric first excited state

But what about the $<KE>$ of the Particle in Box?

$\langle p \rangle \geq 0$ so what about expectation value of $K = \frac{p^2}{2m}$?

$\langle K \rangle \geq 0$ because $\langle p \rangle \geq 0$; clearly not, since we showed $E = KE \neq 0$

Why? What gives?

Because $p_n = \pm \sqrt{2mE_n} = \pm \frac{n\pi\hbar}{L}$; "±" is the key!

The AVERAGE $p = 0$, since particle is moving back & forth

$$
\langle KE \rangle = \frac{\langle p^2 \rangle}{2m} \neq 0; \quad \text{not } \frac{\langle p^2 \rangle}{2m} !
$$

Be careful when being "lazy"

Quiz: what about $\langle KE \rangle$ of a quantum Oscillator?
Does similar logic apply??
Schrodinger Eqn: Stationary State Form

In such cases, $P(x,t)$ is INDEPENDENT of time. These are called "stationary" states because Prob is independent of time.

Examples: Particle in a box (why?)
Quantum Oscillator (why?)

Total energy of the system depends on the spatial orientation of the system: characteristic of the potential situation!

\[P(x,t) = \Psi^* \Psi = \psi^* (x) e^{-\frac{ip}{\hbar}} \psi(x) e^{\frac{ip}{\hbar}} = \psi^*(x) \psi(x) e^{\frac{ip}{\hbar}} e^{-\frac{ip}{\hbar}} = |\psi(x)|^2 \]

Simple Harmonic Oscillator: Quantum and Classical

- spring with force const k
- $x=0$
- m
- x
Particle of mass \(m \) within a potential \(U(x) \):

\[
\ddot{F}(x) = -\frac{dU(x)}{dx}
\]

\[
\ddot{F}(x=a) = -\frac{dU(x)}{dx} \bigg|_{x=a} = 0,
\]

\[
\ddot{F}(x=b) = 0, \quad \ddot{F}(x=c) = 0 \quad \text{...But...}
\]

look at the Curvature:

\[
\frac{d^2U}{dx^2} > 0 \quad (\text{stable}), \quad \frac{d^2U}{dx^2} < 0 \quad (\text{unstable})
\]

Stable Equilibrium: General Form:

\[
U(x) = U(a) + \frac{1}{2} k(x - a)^2
\]

Rescale \(\Rightarrow U(x) = \frac{1}{2} k(x - a)^2 \)

[Motion of a Classical Oscillator (ideal)]

Ball originally displaced from its equilibrium position, motion confined between \(x=0 \) & \(x=A \)

\[
U(x) = \frac{1}{2} kx^2 - \frac{1}{2} m\omega^2 x^2; \quad \omega = \sqrt{\frac{k}{m}} = \text{Ang. Freq}
\]

\[
E = \frac{1}{2} kA^2 \Rightarrow \text{Changing } A \text{ changes } E
\]

E can take any value & if \(A \to 0, \ E \to 0 \)

Max. KE at \(x = 0, \ KE = 0 \) at \(x = \pm A \)

Quantum Picture: Harmonic Oscillator

Find the Ground state Wave Function \(\psi(x) \)

Find the Ground state Energy \(E \) when \(U(x) = \frac{1}{2} m\omega^2 x^2 \)

Time Dependent Schrodinger Eqn:

\[
\frac{-\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + \frac{1}{2} m\omega^2 x^2 \psi(x) = E \psi(x)
\]

\[
\Rightarrow \frac{d^2 \psi(x)}{dx^2} = \frac{2m}{\hbar^2} (E - \frac{1}{2} m\omega^2 x^2) \psi(x) = 0
\]

What \(\psi(x) \) solves this?

Two guesses about the simplest Wavefunction:

1. \(\psi(x) \) should be symmetric about \(x \)
2. \(\psi(x) \to 0 \) as \(x \to \infty \)

+ \(\psi(x) \) should be continuous & \(\frac{d\psi(x)}{dx} = \text{continuous} \)

My guess: \(\psi(x) = C_0 e^{-\alpha x} \); Need to find \(C_0 \) & \(\alpha \):

What does this wavefunction & PDF look like?
Quantum Picture: Harmonic Oscillator

P(x) = C_0 e^{-2\alpha x^2}

ψ(x) = C_0 e^{-\alpha x^2}

How to Get C_0 & \alpha ?? ...Try plugging in the wave-function into the time-independent Schr. Eqn.

Time Independent Sch. Eqn & The Harmonic Oscillator

Master Equation is:

\[\frac{\partial^2 \psi(x)}{\partial x^2} = \frac{2m}{\hbar^2} \left[\frac{1}{2} m \omega^2 x^2 - E \right] \psi(x) \]

Since \(\psi(x) = C_0 e^{-\alpha x^2} \), \(\frac{d\psi(x)}{dx} = C_0 (-2\alpha x) e^{-\alpha x^2} \),

\[\frac{\partial^2 \psi(x)}{\partial x^2} = C_0 \frac{d(-2\alpha x)}{dx} e^{-\alpha x^2} + C_0 (-2\alpha x)^2 e^{-\alpha x^2} = C_0 [4\alpha^2 x^2 - 2\alpha] e^{-\alpha x^2} \]

⇒ \(C_0 \left[4\alpha^2 x^2 - 2\alpha \right] e^{-\alpha x^2} = \frac{2m}{\hbar^2} \left[\frac{1}{2} m \omega^2 x^2 - E \right] C_0 e^{-\alpha x^2} \)

Match the coeff of \(x^2 \) and the Constant terms on LHS & RHS

⇒ \(4\alpha^2 = \frac{2m}{\hbar^2} \frac{1}{2} m \omega^2 \) or \(\alpha = \frac{m \omega}{2\hbar} \)

& the other match gives \(2\alpha = \frac{2m}{\hbar^2} E \), substituing \(\alpha \) \(\Rightarrow \)

E = \(\frac{1}{2} \hbar \omega = hf \) !!!......(Planck's Oscillators)

What about \(C_0 \)? We learn about that from the Normalization cond.
\[\int_{-\infty}^{\infty} |\psi_n(x)|^2 \, dx = 1 = \int_{-\infty}^{\infty} C_n^2 e^{-\frac{m\omega^2}{\hbar} x^2} \, dx \]

Since \[\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\frac{\pi}{a}} \] (do not memorize this)

Identifying \(a = \frac{m\omega}{\hbar} \) and using the identity above

\[C_n = \left[\frac{m\omega}{\pi \hbar} \right]^\frac{1}{4} \]

Hence the Complete NORMALIZED wave function is:

\[\psi_n(x) = \left[\frac{m\omega}{\pi \hbar} \right]^\frac{1}{4} e^{-\frac{m\omega}{\hbar} x^2} \]

Ground State Wavefunction

has energy \(E = \hbar f \)

Planck's Oscillators were electrons tied by the "spring" of the mutually attractive Coulomb Force

\[E = KE + U(x) > 0 \text{ for } n=0 \]

Quantum Mechanical prob for particle

To live outside classical turning points

Is finite!

Classically particle most likely to be at the turning point (velocity=0)

Quantum Mechanically, particle most likely to be at \(x = x_0 \) for \(n=0 \)
Classical & Quantum Pictures of SHO compared

- Limits of classical vibration: Turning Points (do on Board)
- Quantum Probability for particle outside classical turning points \(P(|x|>A) = 16\% \)
 - Do it on the board (see Example problems in book)

Excited States of The Quantum Oscillator

\[
\psi_n(x) = C_n H_n(x) e^{-\frac{mx^2}{2}} ;
\]

\(H_n(x) \) = Hermite Polynomials with

- \(H_0(x) = 1 \)
- \(H_1(x) = 2x \)
- \(H_2(x) = 4x^2 - 2 \)
- \(H_3(x) = 8x^3 - 12x \)

\[
H_n(x) = (-1)^n e^{x^2} \frac{d^n e^{-x^2}}{dx^n}
\]

and

\[
E_n = (n + \frac{1}{2}) \hbar \omega = (n + \frac{1}{2}) \hbar \omega
\]

Again \(n = 0, 1, 2, 3 \ldots \infty \) Quantum #
Excited States of The Quantum Oscillator

Ground State Energy \(\geq 0 \) always

As \(n \to \infty \), classical and quantum probabilities become similar

The Case of a Rusty “Twisted Pair” of Naked Wires & How Quantum Mechanics Saved ECE Majors!

- Twisted pair of Cu Wire (metal) in virgin form
- Does not stay that way for long in the atmosphere
 - Gets oxidized in dry air quickly Cu \(\rightarrow \) Cu\(_2\)O
 - In wet air Cu \(\rightarrow \) Cu(OH)\(_2\) (the green stuff on wires)
- Oxides or Hydride are non-conducting so no current can flow across the junction between two metal wires
- No current means no circuits \(\rightarrow \) no EE, no ECE !!
- All ECE majors must now switch to Chemistry instead & play with benzene !!! Bad news!
Potential Barrier

- **E < U**
- **U**
- **x**
- **Transmitted?**

Description of Potential

- **Region I**
 - \(U = 0 \) \(x < 0 \)
- **Region II**
 - \(U = U \) \(0 < x < L \)
- **Region III**
 - \(U = 0 \) \(x > L \)

Consider George as a “free Particle/Wave” with Energy \(E \) incident from Left. Free particle are under no Force; have wavefunctions like:

\[
\Psi = A \, e^{i(kx - wt)} \quad \text{or} \quad B \, e^{i(-kx - wt)}
\]

Tunneling Through A Potential Barrier

- **Region I**
- **U**
- **Region III**
- **Prob?**

- **Classical & Quantum Pictures compared:** When \(E > U \) & when \(E < U \)
- **Classically**, a particle or a beam of particles incident from left encounters barrier:
 - **when** \(E > U \) → Particle just goes over the barrier (gets transmitted)
 - **When** \(E < U \) → particle is stuck in region I, gets entirely reflected, no transmission (T)
- **What happens in a Quantum Mechanical barrier?** No region is inaccessible for particle since the potential is (sometimes small) but finite.
Beam of Particles With $E < U$ Incident on Barrier From Left

Region I

Incident Beam

Reflected Beam

Transmitted Beam

Region III

x

Description of Wave Functions in Various Regions: Simple Ones first

In Region I: $\Psi_I(x,t) = Ae^{-i\omega t} + Be^{i\omega t} = \text{incident + reflected Waves}$

with $E = \hbar \omega = \frac{\hbar k^2}{2m}$

define Reflection Coefficient: $R = \frac{B}{A} = \text{frac of incident wave intensity reflected back}$

In Region III: $\Psi_{III}(x,t) = Fe^{-i\omega t} + Ge^{i\omega t} = \text{transmitted}$

Note: $Ge^{i\omega t}$ corresponds to wave incident from right!

This piece does not exist in the scattering picture we are thinking of now ($G=0$)

So $\Psi_{III}(x,t) = Fe^{-i\omega t}$ represents transmitted beam. Define $T = \frac{|F|^2}{|A|^2}$

Unitarity Condition $\Rightarrow R + T = 1$ (particle is either reflected or transmitted)

Wave Function Across the Potential Barrier

In Region II of Potential U

TISE: $\frac{\hbar^2}{2m} \frac{d^2 \Psi(x)}{dx^2} + U \Psi(x) = E \Psi(x)$

$\Rightarrow \frac{d^2 \Psi(x)}{dx^2} = \frac{2m}{\hbar^2} (U - E) \Psi(x)$

$\Rightarrow \alpha^2 \Psi(x)$

with $\alpha^2 = \frac{\sqrt{2m(U-E)}}{\hbar}$; $U \geq E \Rightarrow \alpha^2 > 0$

Solutions are of form $\Psi(x) = e^{\pm ix\alpha}$

$\Psi_{II}(x,t) = Ce^{ix\alpha t} + De^{-ix\alpha t}$ $0 < x < L$

To determine C & D \Rightarrow apply matching cond.

$\Psi_{II}(x,t)$ is continuous across barrier ($x=0,L$)

$\frac{d\Psi_{II}(x,t)}{dx} = \text{continuous across barrier (x=0,L)}$
Continuity Conditions Across Barrier

At \(x = 0 \), continuity of \(\psi(x) \) ⇒

\[A + B = C + D \quad (1) \]

At \(x = 0 \), continuity of \(\frac{d\psi(x)}{dx} \) ⇒

\[ikA - ikB = \alpha C - \alpha D \quad (2) \]

Similarly at \(x = L \) continuity of \(\psi(x) \) ⇒

\[Ce^{-\alpha L} + De^{+\alpha L} = Fe^{+\alpha L} \quad (3) \]

at \(x = L \), continuity of \(\frac{d\psi(x)}{dx} \) ⇒

\[-(\alpha C)e^{-\alpha L} + (\alpha D)e^{+\alpha L} = ikFe^{+\alpha L} \quad (4) \]

Four equations & four unknowns

Can’t determine \(A, B, C, D \) but if you

Divide throughout by \(A \) in all 4 equations :

⇒ ratio of amplitudes → relations for \(R \) & \(T \)

That’s what we need any way

Potential Barrier when \(E < U \)

Expression for Transmission Coeff: \(T = T(E) \)

Depends on barrier Height \(U \), barrier Width \(L \) and particle Energy \(E \)

\[
T(E) = \left[1 + \frac{U^2}{4E(U - E)} \sinh^2(\alpha L) \right]^{-1/2} \quad \alpha = \frac{\sqrt{2m(U - E)}}{h}
\]

and \(R(E) = 1 - T(E) \)........what’s not transmitted is reflected

Above equation holds only for \(E < U \)

For \(E > U \), \(\alpha = \text{imaginary#} \)

\(\sinh(\alpha L) \) becomes oscillatory

This leads to an Oscillatory \(T(E) \) and Transmission resonances occur where

For some specific energy ONLY, \(T(E) = 1 \)

At other values of \(E \), some particles are reflected back even though \(E > U \) !!

[do the derivation on blackboard]

That’s the Wave nature of the Quantum particle
A Special Case That is Instructive & Useful: \(U \gg E \)

Given the 4 equations from Continuity Conditions: Solve for \(\frac{A}{F} \)

\[
\frac{A}{F} = \left[\frac{1}{2} + i \left(\frac{\alpha}{k} \right) \right] e^{(k+\alpha)L} + \left[\frac{1}{2} - i \left(\frac{\alpha}{k} \right) \right] e^{(k-\alpha)L}.
\]

Remember \(\alpha = \sqrt{2m(U-E) \hbar} \), \(k = \sqrt{2mE \hbar} \),

when \(U \gg E \), \(\alpha \gg k \) & \(\frac{\alpha}{k} \gg 1 \); so \(\frac{\alpha}{k} \approx \frac{\alpha}{k} \); For large Barrier \(L \), \(\alpha L \gg 1 \)

\[
\frac{A}{F} = \left[\frac{1}{2} + i \left(\frac{\alpha}{k} \right) \right] e^{(k+\alpha)L} \left(\frac{A}{F} \right) = \left[\frac{1}{2} - i \left(\frac{\alpha}{k} \right) \right] e^{(k-\alpha)L}.
\]

\[
T^{-1} = \left(\frac{A}{F} \right) = \left[\frac{1}{4} + \frac{1}{16} \left(\frac{\alpha}{k} \right)^2 \right] e^{2\alpha L} = \frac{1}{T(E)}; \text{ now invert & consolidate}
\]

\[
T = \frac{F^*}{A} = \left(\frac{16}{4 + \left(\frac{\alpha}{k} \right)^2} \right) e^{-2\alpha L}; \text{ now watch the variables employed}
\]

\[
\alpha = \sqrt{\frac{2m(U-E)}{\hbar}}, \quad k = \sqrt{\frac{2mE \hbar}{\hbar}}, \quad \frac{\alpha}{k} = \frac{p}{\hbar} - \frac{2\pi}{\lambda}.
\]

\[
\left(\frac{\alpha}{k} \right)^2 = \frac{2m(U-E)/\hbar^2}{2mE/\hbar^2} = \frac{U}{E} - 1 = \frac{U}{E}
\]

\[
\Rightarrow \left(\frac{16}{4 + \left(\frac{\alpha}{k} \right)^2} \right) = \left(\frac{16}{4 + \left(\frac{U}{E} - 1 \right)^2} \right) \rightarrow \text{varies slowly compared with } e^{2\alpha L} \text{ term}
\]

\[
\text{keeping in mind only the Order of magnitude, I suggest}
\]

\[
\left(\frac{16}{4 + \left(\frac{U}{E} - 1 \right)^2} \right) \approx 1; \text{ back to } T = \left(\frac{16}{4 + \left(\frac{\alpha}{k} \right)^2} \right) e^{-2\alpha L} \text{ substituting}
\]

So approximately \(T \approx e^{-2\alpha L} \) Transmission Prob is fn of \(U,E,L \)

Why subject you to this TORTURE? \(\rightarrow \) Estimate \(T \) for complicated Potentials

See next (example of Cu oxide layer, radioactivity, blackhole blowup etc)
The Great Escape! My Favorite Movie

Story involves an Allied plan for a massive breakout from a Nazi P.O.W camp, during World War Two. The Nazis had created a high-security, escape-proof prisoner of war camp for those annoying detainees who have attempted escape from their other prison of war camps. These prisoners are not discouraged at all, as they plan a huge escape of 100 men.

Separated in Coppertino

Q: Cu wires are separated by insulating Oxide layer. Modeling the Oxide layer as a square barrier of height $U=10.0\,\text{eV}$, estimate the transmission coeff for an incident beam of electrons of $E=7.0\,\text{eV}$ when the layer thickness is

(a) $5.0\,\text{nm}$ (b) $1.0\,\text{nm}$

Q: If a $1.0\,\text{mA}$ current in one of the intertwined wires is incident on Oxide layer, how much of this current passes through the Oxide layer on to the adjacent wire if the layer thickness is $1.0\,\text{nm}$? What becomes of the remaining current?

$$T(E) = \left[1 + \frac{1}{4} \left(\frac{U^2}{E(U-E)} \right) \sinh^2(\alpha L) \right]^{-1}$$

$$\alpha = \frac{\sqrt{2m(U-E)}}{\hbar}, \quad k = \frac{\sqrt{2mE}}{\hbar}$$
Substitute in expression for \(T = T(E) \)

\[
T(E) = \left[1 + \frac{L}{4} \left(\frac{E}{E(U - E)} \right) \sinh^4(aL) \right]^{-1}
\]

Use \(\hbar = 1.973 \text{ keV.A/c} \), \(m = 511 \text{ keV/c}^2 \)

\[
\alpha = \frac{\sqrt{2m(U - E)}}{\hbar} = \frac{\sqrt{2 \times 511 \text{ keV/c}^2 \times 3.0 \times 10^{-4} \text{ keV}}}{1.973 \text{ keV.A/c}} = 0.8875 \text{Å}
\]

Substitute in expression for \(T = T(E) \)

\[
T = \left[1 + \frac{L}{4} \left(\frac{10^7}{(U - E)} \right) \sinh^4(0.8875 \text{Å}^{-1})(50 \text{Å}) \right]^{-1} = 0.963 \times 10^{-30} \text{(small)}!!
\]

However, for \(L = 10^{-2} \text{Å} \), \(T = 0.657 \times 10^{-1} \)

Reducing barrier width by \(\times 5 \) leads to Trans. Coeff enhancement by \(31 \) orders of magnitude !!

1 mA current \(\rightarrow \frac{Q = Nq_1 \alpha}{t} \Rightarrow N = 6.25 \times 10^9 \text{ electrons} \)

\(N_1 = \# \text{ of electrons that escape to the adjacent wire (past oxide layer)} \)

\(N_1 = N \cdot I = (6.25 \times 10^9 \text{ electrons}) \times \frac{I}{1} \)

For \(L = 10^{-2} \text{Å} \), \(T = 0.657 \times 10^{-1} \) \(\Rightarrow N_1 = 4.11 \times 10^9 \Rightarrow \frac{I}{I_c} = 65.7 \text{ pA}! \)

Current measured on the first wire is sum of incident+reflected currents

and current measured on “adjacent” wire is the \(I_c \)

A Complicated Potential Barrier Can Be Broken Down

- Multiplicative Transmission prob, ever decreasing but not 0
- Can be broken down into a sum of successive Rectangular potential barriers for which we learnt to find the Transmission probability \(T_i \)
- The Transmitted beam intensity thru one small barrier becomes incident beam intensity for the following one
- So on & so forth … till the particle escapes with final Transmission prob \(T \)

\[
T = \int T_i \ dx = e^{-2 \left(\frac{\sqrt{2m}}{\hbar} \int \sqrt{U(x) - E} \ dx \right)}
\]
Radioactivity: The α-particle & Steve McQueen Compared

In a Nucleus such as Ra, Uranium etc α-particle rattles around parent nucleus, “hitting” the nuclear walls with a very high frequency (probing the “fence”), if the Transmission prob $T > 0$, then eventually particle escapes

Within nucleus, α-particle is virtually free but is trapped by the Strong nuclear force

Once outside nucleus, the particle “sees” only the repulsive (+) Coulomb force (nuclear force too faint outside) which keeps it within nucleus

Nuclear radius $R = 10^{-13} \text{ m}$, $E_{\alpha} = 9 \text{ MeV}$

Coulomb barrier $U(r) = \frac{kq_1q_2}{r}$

At $r=R$, $U(R) \approx 30 \text{ MeV}$ barrier

α-particle, due to QM, tunnels thru

It’s the sensitivity of T on E_{α} that accounts for the wide range in half-lives of radioactive nuclei

Radioactivity Explained Roughly (..is enough!)

Protons and neutrons rattling freely inside radioactive nucleus ($R \approx 10^{-15} \text{ m}$)

Constantly morphing into clusters of protons and neutrons

Proto-alpha particle $(2p+2n)$ of $\approx 9 \text{ MeV}$ prevented from getting out by the imposing Coulombic repulsion of remaining charge ($\approx 30 \text{ MeV}$)

Escapes by tunneling thru Coloumb potential…but some puzzling features:

α particles emitted from all types of radioactive nuclei have roughly same KE ≈ 4-9 MeV

In contrast, the half live $T(N \rightarrow e^- N)$ differ by more than 20 orders of magnitude!

<table>
<thead>
<tr>
<th>Element</th>
<th>KE of emitted α</th>
<th>Half Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{212}Po</td>
<td>8.95 MeV</td>
<td>$3 \times 10^{-7} \text{ s}$</td>
</tr>
<tr>
<td>^{240}Cm</td>
<td>6.40 MeV</td>
<td>27 days</td>
</tr>
<tr>
<td>^{226}Ra</td>
<td>4.90 MeV</td>
<td>$1.60 \times 10^3 \text{ Yr}$</td>
</tr>
<tr>
<td>^{232}Th</td>
<td>4.05 MeV</td>
<td>$1.41 \times 10^{10} \text{ yr}$</td>
</tr>
</tbody>
</table>
Radioactivity Explained Crudely

\[
T(E) = \frac{2 e^2 Z}{4 \pi \varepsilon_0 r}
\]

\[
\ln T = \frac{-2}{h} \int_0^b \sqrt{\frac{2 m_u}{4 \pi \varepsilon_0 E}} \left(\frac{2 e^2 Z}{4 \pi \varepsilon_0 r} - E_u \right) dr,
\]

limits of integration correspond to values of \(r \) when \(E = U \)

\[
\Rightarrow 2 e^2 Z = E \Rightarrow \frac{b}{4 \pi \varepsilon_0 E_u}
\]

Define \(\xi = \frac{r}{b} = \frac{r}{2 e^2 Z / 4 \pi \varepsilon_0 E} \) \Rightarrow \ln T \approx \frac{-2}{h} \left(\sqrt{2 m_u E} \right) b \int_0^1 \sqrt{1 - 1 d \xi}

Substitute \(\xi = \sin^2 \theta \) in integration, change limits \(\Rightarrow \)

\[
\ln T \approx \frac{-4}{h} \left(2 m_u E_u \right) b \int_0^{\pi/2} \cos^2 \theta d \theta = \frac{\pi}{4} \quad \text{and} \quad E_u = \frac{m_e V_f^2}{2}
\]

\[
\ln T \approx \frac{-2 \pi}{h} \frac{Z e^2}{4 \pi \varepsilon_0} \frac{2 m_u}{E_u} = \frac{-4 \pi}{h} \frac{Z e^2}{4 \pi \varepsilon_0} \frac{1}{V_f \alpha}
\]

\[
\Rightarrow T \propto e^\frac{-1}{V_f} \quad \text{and} \quad T \propto e^{-2} \quad \text{...SHARP DEPENDENCE!!}
\]

Radioactivity

A more elaborate calculation (Bohm) yields

\[
T(E) = e^{\frac{-4 \pi Z e^2}{h \sqrt{E} \sqrt{\alpha}}}
\]

where \(\alpha = \frac{h^2}{m_e ke^2} \approx 8 \text{fm} \) is the "Bohr Radius" of alpha particles

and \(E_u = \frac{ke^2}{2 \alpha} = 0.0993 \text{MeV} = \text{Nuclear "Rydberg"}

To obtain decay rates, need to multiply \(T(E) \) by the number of collisions \(\alpha \) particle makes with the "walls" of the nuclear barrier. This collision frequency

\[
f = \frac{V_f}{2R} \quad \text{transit time for} \quad \alpha \text{ particle crossing the nuclear barrier (rattle time)}
\]

Typically \(f = 10^{21} \text{ collisions/second} \)

Decay rate (prob. of \(\alpha \) emission per unit time) \(\lambda = f \cdot T(E) \)

\[
\lambda = 10^{21} e^{\frac{-4 \pi Z e^2}{h \sqrt{E} \sqrt{\alpha}}}
\]

Definition: Half life

\[
\tau_{1/2} = \frac{\ln 2}{\lambda}
\]
Half Lives Compared: Sharp dependence on E_\alpha

\(\alpha\) particles emerge with (a) \(E=4.05\) MeV in Thorium (b) \(E=8.95\) MeV in Polonium. The nuclear size \(R = 9\) fm in both cases. Which one will outlive you?

Thorium (Z=90) decays into Radium (Z=88)

\[
T(E) = \exp\left\{-4\pi\alpha^{2}/(0.0993/4.05) + 8\alpha^{2}/(9.00/7.25)\right\}
\]

\[= 1.3 \times 10^{-9}\]

Taking \(f=10^{21}Hz \Rightarrow \lambda = 1.3 \times 10^{-16}\) \(\alpha\) emission \(\Rightarrow t_{1/2} = \frac{0.693}{1.3 \times 10^{-16}} = 1.7 \times 10^{10}\) yr!!!

Polonium (Z=84) decays into Lead (Z=82)

\[
T(E) = \exp\left\{-4\pi\alpha^{2}/(0.0993/8.95) + 8\alpha^{2}/(9.00/7.25)\right\}
\]

\[= 8.2 \times 10^{-13}\]

Taking \(f=10^{21}Hz \Rightarrow \lambda = 8.2 \times 10^{-8}\) \(\alpha\) emission \(\Rightarrow t_{1/2} = \frac{0.693}{8.2 \times 10^{-8}} = 8.4 \times 10^{-10}\) s!!!

Potential Barrier: An Unintuitive Result When E>U

Description Of WaveFunctions in Various regions: Simple Ones first

In Region I: \(\Psi_I(x,t) = \Psi_{e^{ikx}(\text{inc})} + \Psi_{e^{ikx}(\text{ref})}\)

In Region II of Potential U:

TISE: \[\frac{\hbar^2}{2m} \frac{d^2\Psi(x)}{dx^2} + U\Psi(x) = E\Psi(x) \Rightarrow d^2\Psi(x)/dx^2 = \frac{2m(E-U)}{\hbar^2}\Psi(x) - a_1^2\Psi(x)\]

with \(a_1^2 = \frac{2m(E-U)}{\hbar^2} ; \ U < E \Rightarrow a_1^2 < 0\)

Define \(a = ik ; a_1 = -(k) ; k = \sqrt{\frac{2m(E-U)}{\hbar^2}}\)

\(\Rightarrow \Psi_U = C e^{ikx(\text{inc})} + D e^{ikx(\text{ref})} \Rightarrow \text{Oscillatory Wavefunction}\)

Apply continuity condition at \(x=0\ & \& x=L\)

\[
A + B = C + D \quad kx + kB = kD + kC \quad Ce^{ikx} + De^{-ikx} = Fe^{ikx} \quad kDe^{ikx} - kCe^{-ikx} = kF e^{ikx}\]

Eliminate B, C, D and write every thing in terms of A and F

\[
A = \frac{1}{4} Fe^{ikx} \left[2 - \left(\frac{k}{k} + \frac{k}{k} \right) \right] e^{-ikx} + \left\{ 2 + \left(\frac{k}{k} + \frac{k}{k} \right) \right\} e^{ikx}\]

\[\]
Potential Barrier: An Unintuitive Result When $E > U$

$$\Rightarrow 1 = \frac{A' A}{F' F} = \frac{1}{4} \left[2 \cos k' L - i \left(\frac{k' + k}{k} \right) \sin k' L \right] = 1 + \frac{1}{4} \left[\frac{U^2}{E(E-U)} \right] \sin^2 k' L > 1$$

Only when $\sin k' L = 0, T = 1$; this happens when $k' L = n\pi$

Since $k' = \sqrt{\frac{2m(E-U)}{\hbar^2}} \Rightarrow \sqrt{\frac{2m(E-U)}{\hbar^2}} = n\pi$

$$\Rightarrow E_n = U + n^2 \left(\frac{\pi^2}{2mL^2} \right)$$

is the condition for particle to be completely transmitted

For all other energies, $T < 1$ and $R > 0$!!!

This is Quantum Mechanics in your face!

Special Case: A Potential Step

In region I $(X < 0)$: $\Psi_1(x,t) = Ae^{ikx-\alpha t} + Be^{ikx+\alpha t}$

In region II $(X \geq 0)$: $\Psi_2(x,t) = Ce^{-ix-\gamma t} + De^{ix+\gamma t}$

Applying Continuity conditions of Ψ and $\frac{d\Psi}{dx}$ at $x=0$

$A + B = C$ & $ikA - ikB = -\alpha C$; Eliminating $C \Rightarrow ikA - ikB = -\alpha(A + B)$

Defining Penetration Depth $\delta = \frac{1}{\alpha} = \frac{\hbar}{\sqrt{2m(U-E)}}$

rewriting as $ik\delta A - ik\delta B = -(A+\delta B)$ \(A(1+ik\delta) = B(1-ik\delta)\)

$$\Rightarrow \frac{B}{A} = \frac{(1+ik\delta)}{(1-ik\delta)} \Rightarrow \text{Reflection Coeff } R = \frac{B^* B}{A^* A} = 1 \text{; as expected}$$

This is Quantum Mechanics in your face!
Transmission Probability in A Potential Step

\[U = 0 \quad \text{for} \quad x < 0 \]
\[U = U \quad \text{for} \quad x \geq 0 \]

\[\Psi_\Pi = Ce^{-\alpha x - i\omega t} \]

Since \(\Psi_i(x,t) = Ae^{ikx - i\omega t} + Be^{-ikx - i\omega t} \) ; \(\Psi_\Pi(x,t) = Ce^{-\alpha x - i\omega t} \)

Applying Continuity conditions of \(\Psi \) and \(\frac{d\Psi}{dx} \) at \(x = 0 \):

\[A + B = \frac{C}{A} = 1 + \frac{B}{A} = 1 - \frac{(1+ik\delta)}{(1-ik\delta)} \]
\[\Rightarrow \frac{C}{A} = \frac{2ik\delta}{1-ik\delta} \neq 0 \Rightarrow f = \left(\frac{C}{A} \right) > 0 \]

The particle burrows into the skin of the step barrier. If one has a barrier of width \(L = \delta \), particle escapes thru the barrier. The penetration distance \(\Delta x = \) distance for which prob. drops by 1/e. \[\frac{\Delta x}{2} = \frac{\hbar}{\sqrt{2m(U-E)}} \]

Particle Beams and Flux Conservation

If we write the particle wavefunction for incident as \(\psi_i = Ae^{ikx} \) and reflected as \(\psi_r = Be^{-ikx} \).

The particle flux arriving at the barrier, defined as number of particles per unit length per unit time

\[S_i = |\psi_i|^2 = \left| \frac{p}{m} \right| \quad \text{and} \quad S_e = |\psi_r|^2 = \left| \frac{p}{m} \right| \quad \text{(for non-relativistic case)} \]

Since the wavefunction in region III \(\psi_m = Fe^{ikx} \) and \(S_m = |\psi_m|^2 \left| \frac{p}{m} \right| \)

The general expression for flux probabilities : number of particles passing by any point per unit time:

Transmission Probability \(T = \frac{\psi_m^* \psi_m |V_{i\beta}|}{\psi_i^* \psi_i |V_{i\beta}|} \)

Reflection Probability \(R = \frac{\psi_r^* \psi_r |V_{i\beta}|}{\psi_i^* \psi_i |V_{i\beta}|} \)

The general expression for conservation of particle flux remains: \(I = T + R \)
Where does this generalization become important?

- Particle with energy E incident from left on a potential step U, with $E > U$
- Particle momentum, wavelength and velocities are different in region I and II
- Is the reflection probability $= 0$?
• Learn to extend S. Eq and its solutions from “toy” examples in 1-Dimension (x) → three orthogonal dimensions (r ≡ x, y, z)

\[\vec{r} = \hat{i}x + \hat{j}y + \hat{k}z \]

• Then transform the systems
 – Particle in 1D rigid box \(\rightarrow \) 3D rigid box
 – 1D Harmonic Oscillator \(\rightarrow \) 3D Harmonic Oscillator

• Keep an eye on the number of different integers needed to specify system \(1 \rightarrow 3 \) (corresponding to 3 available degrees of freedom x, y, z)

Quantum Mechanics In 3D: Particle in 3D Box

Extension of a Particle In a Box with rigid walls
1D \(\rightarrow \) 3D
\[\Rightarrow \text{Box with Rigid Walls (} U=\infty \text{)} \text{ in X,Y,Z dimensions} \]

\(U(r)=0 \) for \(0<x,y,z<L \)

Ask same questions:
• Location of particle in 3d Box
• Momentum
• Kinetic Energy, Total Energy
• Expectation values in 3D

To find the Wavefunction and various expectation values, we must first set up the appropriate TDSE & TISE
The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates

Time Dependent Schrodinger Eqn:
\[\hbar^2 \nabla^2 \Psi(x,y,z,t) + U(x,y,z) \Psi(x,t) = \frac{i \hbar}{\hbar} \frac{\partial \Psi(x,y,z,t)}{\partial t} \]
.....In 3D

\[\Psi^2 = \frac{\hbar^2}{2m} \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right) = [K] \]

So
\[\frac{\hbar^2}{2m} \Psi^2 = \left(\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} \right) + \left(\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial y^2} \right) + \left(\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial z^2} \right) = [K] \]

so \[\{H\} \Psi(x,t) = \{E\} \Psi(x,t) \]

is still the Energy Conservation Eq

Stationary states are those for which all probabilities are constant in time and are given by the solution of the TDSE in separable form:
\[\Psi(x,y,z,t) = \Psi(x) \Psi(y) \Psi(z) \]

This statement is simply an extension of what we derived in case of 1D time-independent potential.

Particle in 3D Rigid Box: Separation of Orthogonal Spatial (x,y,z) Variables

TISE in 3D:
\[\frac{\hbar^2}{2m} \nabla^2 \psi(x,y,z) + U(x,y,z) \psi(x,y,z) = E \psi(x,y,z) \]

x,y,z independent of each other, write \(\psi(x,y,z) = \psi_1(x) \psi_2(y) \psi_3(z) \)

and substitute in the master TISE, after dividing throughout by \(\psi_1(x) \psi_2(y) \psi_3(z) \)

and noting that \(U(r)=0 \) for \(0<x,y,z,<L \) \(\Rightarrow \)

\[\left(-\frac{\hbar^2}{2m} \frac{\partial^2 \psi_1(x)}{\partial x^2} \right) + \left(-\frac{\hbar^2}{2m} \frac{\partial^2 \psi_2(y)}{\partial y^2} \right) + \left(-\frac{\hbar^2}{2m} \frac{\partial^2 \psi_3(z)}{\partial z^2} \right) = E = \text{Const} \]

This can only be true if each term is constant for all \(x,y,z \) \(\Rightarrow \)

\[\frac{\hbar^2}{2m} \frac{\partial^2 \psi_1(x)}{\partial x^2} = E \psi_1(x) \]
\[\frac{\hbar^2}{2m} \frac{\partial^2 \psi_2(y)}{\partial y^2} = E \psi_2(y) \]
\[\frac{\hbar^2}{2m} \frac{\partial^2 \psi_3(z)}{\partial z^2} = E \psi_3(z) \]

With \(E_1 + E_2 + E_3 = E = \text{Constant} \) (Total Energy of 3D system)

Each term looks like particle in 1D box (just a different dimension)

So wavefunctions must be like \(\psi_1(x) \propto \sin k_1 x \quad \psi_2(y) \propto \sin k_2 y \quad \psi_3(z) \propto \sin k_3 z \)
Particle in 3D Rigid Box: Separation of Orthogonal Variables

Wavefunctions are like $\psi_x(x) \propto \sin k_1 x$, $\psi_y(y) \propto \sin k_2 y$, $\psi_z(z) \propto \sin k_3 z$

Continuity Conditions for ψ_i and its first spatial derivatives $\Rightarrow n_i \pi = k_i L$

Leads to usual Quantization of Linear Momentum $\hat{p} = h \hat{k}$ in 3D

$$p_x = \frac{\pi h}{L} n_1; \quad p_y = \frac{\pi h}{L} n_2; \quad p_z = \frac{\pi h}{L} n_3$$

(n_i, n_2, n_3 = 1, 2, 3, \ldots)

Note: by usual Uncertainty Principle argument neither of n_1, n_2, n_3 = 0! (why?)

Particle Energy $E = K + U = \frac{1}{2m} (p_x^2 + p_y^2 + p_z^2) = \frac{\pi^2 h^2}{2mL^2} (n_1^2 + n_2^2 + n_3^2)$

Energy is again quantized and brought to you by integers n_1, n_2, n_3 (independent) and $\psi(\vec{r}) = A \sin k_1 x \sin k_2 y \sin k_3 z$ (A = Overall Normalization Constant)

$$\Psi(\vec{r},t) = \psi(\vec{r}) e^{\frac{iE}{h}t} = A [\sin k_1 x \sin k_2 y \sin k_3 z] e^{\frac{iE}{h}t}$$

Particle in 3D Box: Wave function Normalization Condition

$\Psi(\vec{r},t) = \psi(\vec{r}) e^{\frac{E}{h}t} = A [\sin k_1 x \sin k_2 y \sin k_3 z] e^{\frac{E}{h}t}$

$\Psi^*(\vec{r},t) = \psi^*(\vec{r}) e^{\frac{-E}{h}t} = A [\sin k_1 x \sin k_2 y \sin k_3 z] e^{\frac{-E}{h}t}$

$\Psi^*(\vec{r},t) \Psi(\vec{r},t) = A^2 [\sin^2 k_1 x \sin^2 k_2 y \sin^2 k_3 z]$

Normalization Condition: $1 = \iiint P(\vec{r}) dx \, dy \, dz \Rightarrow$

$$1 = A^2 \int_{x=0}^{L} \sin^2 k_1 x \, dx \int_{y=0}^{L} \sin^2 k_2 y \, dy \int_{z=0}^{L} \sin^2 k_3 z \, dz = A^2 \left(\frac{L}{2} \right) \left(\frac{L}{2} \right) \left(\frac{L}{2} \right)$$

$\Rightarrow A = \left[\frac{2}{L} \right]^{\frac{3}{2}}$ and $\Psi(\vec{r},t) = \left[\frac{2}{L} \right]^{\frac{3}{2}} [\sin k_1 x \sin k_2 y \sin k_3 z] e^{\frac{iE}{h}t}$
Particle in 3D Box: Energy Spectrum & Degeneracy

\[E_{n_1, n_2, n_3} = \frac{\pi^2 \hbar^2}{2mL^2} (n_1^2 + n_2^2 + n_3^2); \quad n_i = 1, 2, 3 \ldots \infty, n_i \neq 0 \]

Ground State Energy \(E_{111} = \frac{3\pi^2 \hbar^2}{2mL^2} \)

Next level \(\Rightarrow \) 3 Excited states \(E_{211} = E_{121} = E_{112} = \frac{6\pi^2 \hbar^2}{2mL^2} \)

Different configurations of \(\psi (r) = \psi (x, y, z) \) have same energy \(\Rightarrow \) degeneracy

Degenerate States

\[E_{211} = E_{121} = E_{112} = \frac{6\pi^2 \hbar^2}{2mL^2} \]
Probability Density Functions for Particle in 3D Box

Same Energy \rightarrow Degenerate States
Can't tell by measuring energy if particle is in 211, 121, 112 quantum state

Source of Degeneracy: How to “Lift” Degeneracy

- Degeneracy came from the threefold symmetry of a CUBICAL Box ($L_x = L_y = L_z = L$)

- To lift (remove) degeneracy \rightarrow change each dimension such that CUBICAL box \rightarrow Rectangular Box
 - ($L_x \neq L_y \neq L_z$)
 - Then

\[
E = \frac{n_1^2 \pi^2}{2mL_x^2} + \frac{n_2^2 \pi^2}{2mL_y^2} + \frac{n_3^2 \pi^2}{2mL_z^2}
\]
The Coulomb Attractive Potential That Binds the electron and Nucleus (charge +Ze) into a Hydrogenic atom

\[U(r) = \frac{kZe^2}{r} \]

The Hydrogen Atom In Its Full Quantum Mechanical Glory

As in case of particle in 3D box, we should use seperation of variables (x,y,z) to derive 3 independent differential eqns.

To simplify the situation, choose more appropriate variables

Cartesian coordinates \((x,y,z)\) → Spherical Polar \((r,\theta,\phi)\) coordinates

\[
\begin{align*}
x &= r \sin \theta \cos \phi \\
y &= r \sin \theta \sin \phi \\
z &= r \cos \theta \\
r &= \sqrt{x^2 + y^2 + z^2} \\
\theta &= \cos^{-1} \frac{z}{r} \quad \text{(Polar angle)} \\
\phi &= \tan^{-1} \frac{y}{x} \quad \text{(Azimuthal angle)}
\end{align*}
\]
Spherical Polar Coordinate System

- \(\rho = r \sin \theta \cos \phi \)
- \(\gamma = r \sin \theta \sin \phi \)
- \(z = r \cos \theta \)
- \(r = \sqrt{x^2 + y^2 + z^2} \)
- \(\theta = \cos^{-1} \frac{z}{r} \) (Polar angle)
- \(\phi = \tan^{-1} \frac{y}{x} \) (Azimuthal angle)

Volume Element dV

\[
dV = (r \sin \theta d\phi) (r d\theta) (dr)
\]

\[
= r^2 \sin \theta dr d\theta d\phi
\]
The Schrödinger Equation in Spherical Polar Coordinates (is bit of a mess!)

The TISE is:
\[
\frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(r^2 \sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} + \frac{2m}{\hbar^2} (E - U(r)) \psi(r, \theta, \phi) = 0
\]

Try to free up second last term from all except \(\phi\)

This requires multiplying throughout by \(r^2 \sin^2 \theta\)

\[
\sin^2 \theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \sin \theta \frac{\partial}{\partial \theta} \left(r^2 \sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{2m}{\hbar^2} \sin^2 \theta \frac{2m}{\hbar^2} (E - U(r)) \psi = 0
\]

For Separation of Variables, Write \(\psi(r, \theta, \phi) = R(r) \cdot \Theta(\theta) \cdot \Phi(\phi)\)

Plug it into the TISE above & divide throughout by \(\psi(r, \theta, \phi) = R(r) \cdot \Theta(\theta) \cdot \Phi(\phi)\)

Note that:

\[
\frac{\partial \Psi}{\partial \phi} = \frac{\partial R}{\partial r} \cdot \Theta(\theta) \cdot \Phi(\phi)
\]

\[
\frac{\partial \Psi}{\partial \theta} = \frac{\partial R}{\partial r} \cdot \Theta(\theta) \cdot \Phi(\phi)
\]

\[
\frac{\partial \Psi}{\partial \phi} = \frac{\partial R}{\partial r} \cdot \Theta(\theta) \cdot \Phi(\phi)
\]

when substituted in TISE

\[
\text{Solving For the Hydrogen Atom: Separation of Variables}
\]

\[
\sin^2 \theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \sin \theta \frac{\partial}{\partial \theta} \left(r^2 \sin \theta \frac{\partial \Theta}{\partial \theta} \right) + \frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{2m}{\hbar^2} \sin^2 \theta \frac{2m}{\hbar^2} (E + \frac{ke^2}{r}) \psi = 0
\]

Rearrange by taking the \(\phi\) term on RHS

\[
\sin^2 \theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \sin \theta \frac{\partial}{\partial \theta} \left(r^2 \sin \theta \frac{\partial \Theta}{\partial \theta} \right) + \frac{2m}{\hbar^2} \sin^2 \theta \frac{2m}{\hbar^2} (E + \frac{ke^2}{r}) \psi = \frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial \phi^2}
\]

LHS is fn. of \(r, \theta\) & RHS is fn of \(\phi\) only, for equality to be true for all \(r, \theta, \phi\)

\[
\Rightarrow \text{LHS} = \text{constant} = \text{RHS} = m^2
\]
Deconstructing The Schrodinger Equation for Hydrogen

Now go break up LHS to separate the r & θ terms....

$LHS: \sin^2 \theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \frac{\sin \theta}{\Theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta}{\partial \theta} \right) + \frac{2mr^2 \sin^2 \theta}{h^2} \frac{(E + \frac{ke^2}{r})}{=m_i^2} \frac{m}{m_i}

Divide Thruout by $\sin^2 \theta$ and arrange all terms with r away from $\theta \Rightarrow$

$\frac{1}{R} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \frac{2mr^2}{h^2} \frac{(E + \frac{ke^2}{r})}{=m_i^2} \frac{\sin \theta}{\sin^2 \theta} \frac{1}{\Theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta}{\partial \theta} \right)

Same argument : LHS is fn of r, RHS is fn of θ;

For them to be equal for all $r, \theta \Rightarrow \ LHS = const = RHS = l(l+1)$

What is the mysterious $l(l+1)$? Just a number like $2(2+1)$

So What do we have after all the shuffling!

\[\frac{d^2 \Phi}{d\phi^2} + m_i^2 \Phi = 0 \] ..(1)

\[\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + \left[l(l+1) - \frac{m_i^2}{\sin^2 \theta} \right] \Theta(\theta) = 0(2) \]

\[\frac{1}{r^3} \frac{d}{dr} \left(r^2 \frac{\partial R}{\partial r} \right) + \left[\frac{2mr^2}{h^2} \frac{(E + \frac{ke^2}{r})}{l(l+1)} \right] R(r) = 0(3) \]

These 3 "simple" diff. eqn describe the physics of the Hydrogen atom.

All we need to do now is guess the solutions of the diff. equations

Each of them, clearly, has a different functional form
And Now the Solutions of The S. Eqns for Hydrogen Atom

The Azimuthal Diff. Equation: \[\frac{d^2 \Phi}{d\phi^2} + m_l^2 \Phi = 0 \]

Solution: \(\Phi(\phi) = A e^{im\phi} \) but need to check "Good Wavefunction Condition"

Wave Function must be Single Valued for all \(\phi \Rightarrow \Phi(\phi) = \Phi(\phi + 2\pi) \)

\(\Rightarrow \Phi(\phi) = A e^{im\phi} = A e^{in(\phi + 2\pi)} \Rightarrow m_l = 0, \pm 1, \pm 2, \pm 3, \ldots \) (Magnetic Quantum \#)

The Polar Diff. Eq: \[\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + \left(l(l+1) - \frac{m_l^2}{\sin^2 \theta} \right) \Theta(\theta) = 0 \]

Solutions: go by the name of "Associated Legendre Functions"

only exist when the integers \(l \) and \(m_l \) are related as follows

\(m_l = 0, \pm 1, \pm 2, \pm 3, \ldots, \pm l \); \(l \) = positive number

\(l \): Orbital Quantum Number

Wavefunction Along Azimuthal Angle \(\phi \) and Polar Angle \(\theta \)

For \(l = 0, m_l = 0 \Rightarrow \Theta(\theta) = \frac{1}{\sqrt{2}} ; \)

For \(l = 1, m_l = 0, \pm 1 \Rightarrow \) Three Possibilities for the Orbital part of wavefunction

\[[l = 1, m_l = 0] \Rightarrow \Theta(\theta) = \frac{\sqrt{6}}{2} \cos \theta \]

\[[l = 1, m_l = \pm 1] \Rightarrow \Theta(\theta) = \frac{\sqrt{3}}{2} \sin \theta \]

\[[l = 2, m_l = 0] \Rightarrow \Theta(\theta) = \frac{\sqrt{10}}{4} (3\cos^2 \theta - 1) \]

...and so on and so forth (see book for more Functions)
Radial Differential Equations and Its Solutions

The Radial Diff. Eqn: \[
\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{\partial R}{\partial r} \right) + \left[\frac{2mr^2}{\hbar^2} (E + \frac{ke^2}{r}) - \frac{l(l+1)}{r^2} \right] R(r) = 0
\]

Solutions: Associated Laguerre Functions \(R(r) \), Solutions exist only if:

1. \(E > 0 \) or has negative values given by

 \[
 E = -\frac{ke^2}{2\alpha_0} \left(\frac{1}{n^2} \right);
 \]

 with \(\alpha_0 = \frac{\hbar^2}{mke^2} \) = Bohr Radius

2. And when \(n = \) integer such that \(l = 0, 1, 2, 3, 4, \ldots (n-1) \)

 \(n = \) principal Quantum # or the "big daddy" quantum #

The Hydrogen Wavefunction: \(\psi(r, \theta, \phi) \) and \(\Psi(r, \theta, \phi, t) \)

To Summarize: The hydrogen atom is brought to you by the letters:

- \(n = 1, 2, 3, 4, 5, \ldots \infty \)
- \(l = 0, 1, 2, 3, 4, \ldots (n-1) \)
- \(m_l = 0, \pm 1, \pm 2, \pm 3, \ldots \pm l \)

Quantum # appear only in Trapped systems

The Spatial part of the Hydrogen Atom Wave Function is:

\[
\psi(r, \theta, \phi) = R_{nl}(r) \cdot \Theta_{l} (\theta) \cdot \Phi_{m_l} (\phi) = R_{nl} Y_{l}^{m_l}
\]

\(Y_{l}^{m_l} \) are known as Spherical Harmonics. They define the angular structure in the Hydrogen-like atoms.

The Full wavefunction is

\[
\Psi(r, \theta, \phi, t) = \psi(r, \theta, \phi) e^{-iEt/\hbar}
\]
Radial Wave Functions For \(n=1,2,3 \)

\[
R(r) = \begin{cases}
\frac{2}{a_0} e^{-r/a_0} & n=1 \\
\frac{1}{2\sqrt{2}a_0} (2 \cdot \frac{r}{a_0}) e^{-r/2a_0} & n=2 \\
\frac{2}{81\sqrt{3}a_0^3} (27 - 18 \cdot \frac{r}{a_0^2} + 2 \cdot \frac{r^2}{a_0^4}) e^{-r/3a_0} & n=3
\end{cases}
\]

\(n=1 \rightarrow \text{K shell} \)
\(n=2 \rightarrow \text{L Shell} \)
\(n=3 \rightarrow \text{M shell} \)
\(n=4 \rightarrow \text{N Shell} \)

\(l=0 \rightarrow s(\text{harp}) \text{ sub shell} \)
\(l=1 \rightarrow p(\text{rincipal}) \text{ sub shell} \)
\(l=2 \rightarrow d(\text{iffuse}) \text{ sub shell} \)
\(l=3 \rightarrow f(\text{undamental}) \text{ ss} \)
\(l=4 \rightarrow g \text{ sub shell} \)

Symbolic Notation of Atomic States in Hydrogen

\[
i \rightarrow \begin{array}{cccccccc}
1 & 1s \\
2 & 2s & 2p \\
3 & 3s & 3p & 3d \\
4 & 4s & 4p & 4d & 4f \\
5 & 5s & 5p & 5d & 5f & 5g \\
\end{array}
\]

Note that:

- \(n=1 \) is a non-degenerate system
- \(n>1 \) are all degenerate in \(l \) and \(m_l \)

All states have same energy
But different angular configuration

\[
E = -\frac{\alpha^2}{2a_0} \left(\frac{1}{n^2} \right)
\]
Energy States, Degeneracy & Transitions

Facts About Ground State of H Atom

1. Spherically symmetric ⇒ no \(\theta, \phi \) dependence (structure)
2. Probability Per Unit Volume: \(|\Psi_{nm}(r, \theta, \phi)|^2 = \frac{1}{\pi a_n^2} e^{-\frac{2r}{a_n}} \)
 Likelihood of finding the electron is same at all \(\theta, \phi \) and depends only on the radial separation (r) between electron & the nucleus.
3. Energy of Ground State = \(\frac{-ke^2}{2a_n} = -13.6\,\text{eV} \)
 Overall The Ground state wavefunction of the hydrogen atom is quite boring
 Not much chemistry or Biology could develop if there was only the ground state of the Hydrogen Atom!
 ![Image](image-url)

[We need structure, we need variety, we need some curves!]
Cross Sectional View of Hydrogen Atom prob. densities in r,θ,φ

Birth of Chemistry (Can make Fancy Bonds → Overlapping electron “clouds”)

What’s the electron “cloud” : Its the Probability Density in r, θ, φ space!

Interpreting Orbital Quantum Number (l)

Radial part of S.Eqn: \[
\frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \left[\frac{2m}{\hbar^2} \left(E - \frac{\kappa e^2}{r} \right) (l+1) \right] R(r) = 0
\]

For H Atom: \[E = K + U = K_{\text{RADIAL}} + K_{\text{ORBITAL}} \]

\[\frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \left[\frac{2m}{\hbar^2} K_{\text{RADIAL}} + K_{\text{ORBITAL}} \right] \cdot \frac{\hbar^2 (l+1)}{2m r^2} \]

Examine the equation, if we set \[K_{\text{ORBITAL}} = \frac{\hbar^2 (l+1)}{2m r^2} \]

what remains is a differential equation in \(r \)

\[\frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{2m}{\hbar^2} K_{\text{RADIAL}} \cdot R(r) = 0 \]

which depends only on radius \(r \) of orbit

Further, we also know that \[K_{\text{ORBITAL}} = \frac{1}{2} \hbar^2 \cdot l(l+1) \]

\[L = r \times \hbar \]

\[|L| = \sqrt{l(l+1)} \cdot \hbar \]

Since \(l \) is a positive integer \(0, 1, 2, 3, \ldots (n-1) \) \(\Rightarrow \) angular momentum \[|L| = \sqrt{l(l+1)} \cdot \hbar = \text{discrete values} \]

Quantization of Electron's Angular Momentum
\[\mathbf{L} = \mathbf{r} \times \mathbf{p} \ (\text{Right Hand Rule}) \]

Classically, direction & Magnitude of \(\mathbf{L} \) always well defined.

QM: Can/Does \(\mathbf{L} \) have a definite direction? Proof by Negation:

Suppose \(\mathbf{L} \) was precisely known/defined (\(\mathbf{L} \parallel \mathbf{z} \))

Since \(\mathbf{L} = \mathbf{r} \times \mathbf{p} \Rightarrow \) Electron MUST be in x-y orbit plane

\[\Rightarrow \Delta z = 0 ; \ \Delta \mathbf{p}_z \Delta z \Rightarrow \Delta \mathbf{p}_z \rightarrow \infty; E = \frac{p^2}{2m} \rightarrow \infty \ !! \]

So, in Hydrogen atom, \(\mathbf{L} \) can not have precise measurable value

Uncertainty Principle & Angular Momentum: \([\Delta \mathbf{L}, \Delta \phi] = \hbar \)

\[m_l \]

Consider \(\ell = 2 \)

\[|L| = \sqrt{\ell (\ell + 1)} = \sqrt{6}\hbar \]

In Hydrogen atom, \(\mathbf{L} \) can not have precise measurable value

Arbitrarily picking Z axis as a reference direction:

\(\mathbf{L} \) vector spins around Z axis (precesses).

The Z component of \(\mathbf{L} \):

\[|L_z| = m_l \hbar; \quad m_l = \pm 1, \pm 2, \pm 3, \ldots \pm \ell \]

Note: since \(|L_z| < |L| \) (always)

since \(m_l \hbar < \sqrt{\ell (\ell + 1)} \hbar \) It can never be that \(|L_z| = m_l \hbar = \sqrt{\ell (\ell + 1)} \hbar \)

(breaks Uncertainty Principle)

So......the Electron's dance has begun!
$L = L = \hbar \sqrt{l(l+1)} = \hbar \sqrt{2(2+1)} = \hbar \sqrt{6}$

Electron “sweeps” conical paths of different ϑ:

$\cos \vartheta = L_z / L$

On average, the angular momentum component in x and y cancel out

$<L_x> = 0$
$<L_y> = 0$

Where is it likely to be? \rightarrow Radial Probability Densities

$\Psi(r, \theta, \phi) = R_{lm}(r) \cdot \Theta_m(\theta) \cdot \Phi_{lm}(\phi) = R_{lm} Y_l^m$

Probability Density Function in 3D:

$P(r, \theta, \phi) = \Psi^* \Psi = |\Psi(r, \theta, \phi)|^2 = |R_{lm}|^2 \cdot |Y_l^m|^2$

Note: 3D Volume element $dV = r^2 \sin \theta \, dr \, d\theta \, d\phi$

Prob. of finding particle in a tiny volume dV is

$P \, dV = |R_{lm}|^2 \cdot |Y_l^m|^2 \cdot r^2 \sin \theta \, dr \, d\theta \, d\phi$

The Radial part of Prob. distribution: $P(r)dr$

$P(r)dr = |R_{lm}|^2 \cdot r^2 \, dr \int_0^{2\pi} |\Theta_m(\theta)|^2 \, d\theta \int_0^{\pi} |\Phi_{lm}(\phi)|^2 \, d\phi$

When $\Theta_m(\theta)$ & $\Phi_{lm}(\phi)$ are auto-normalized then

$P(r)dr = |R_{lm}|^2 \cdot r^2 \, dr$; in other words $P(r) = |R_{lm}|^2$

Normalization Condition:

$1 = \int_0^\infty r^2 |R_{lm}|^2 \, dr$

Expectation Values

$\langle r^2 \rangle = \int_0^\infty r^2 P(r) \, dr$
Ground State: Radial Probability Density

\[P(r)dr = \psi(r)^2 4\pi r^2 dr \]

\[\Rightarrow P(r)dr = \frac{4}{a_0^2} r^2 e^{-\frac{r^2}{a_0^2}} \]

Probability of finding Electron for \(r > a_0 \)

\[P_{r>a_0} = \int_a^\infty \frac{4}{a_0^2} r^2 e^{-\frac{r^2}{a_0^2}} dr \]

To solve, employ change of variable

\[z = \frac{2r}{a_0} \]

\[dz = \frac{2}{a_0} dr \]

\[\Rightarrow P_{r>a_0} = \int_0^\infty \frac{1}{2} z^2 e^{-z^2} dz \]

(such integrals called Error Fn)

\[= \frac{1}{2} \left[z^2 + 2z + 2 \right] e^{-z^2} \]

\[= 5e^2 = 0.667 \Rightarrow 66.7\% !! \]

Most Probable & Average Distance of Electron from Nucleus

Most Probable Distance:

In the ground state \((n=1, l=0, m_l=0)\)

\[P(r)dr = \frac{4}{a_0^2} r^2 e^{-\frac{r^2}{a_0^2}} \]

Most probable distance \(r \) from Nucleus \(\Rightarrow \) What value of \(r \) is \(P(r) \) max?

\[\frac{dP}{dr} = 0 \Rightarrow \frac{4}{a_0^2} \frac{d}{dr} \left[r^2 e^{-\frac{r^2}{a_0^2}} \right] = 0 \Rightarrow \frac{2r^3 + 2r}{a_0^2} e^{-\frac{r^2}{a_0^2}} = 0 \]

\[\Rightarrow 2r^3 + 2r = 0 \Rightarrow r = 0 \text{ or } r = a_0 \]

which solution is correct?

(see past quiz) : Can the electron BE at the center of Nucleus \((r=0)\)?

\[P(r=0) = \frac{4}{a_0^2} 0^0 e^{-0} = 0! \Rightarrow \text{ Most Probable distance } r = a_0 \] (Bohr guessed right)

What about the AVERAGE location \(\langle \rangle \) of the electron in Ground state?

\[\Rightarrow \langle r \rangle = \int_0^\infty \int_0^\infty P(r)dr = \int_0^\infty \int_0^\infty \frac{4}{a_0^2} r^2 e^{-\frac{r^2}{a_0^2}} dr \]

\[\Rightarrow \langle r \rangle = \frac{a_0}{4} \int_0^\infty z^3 e^{-z^2} dz \]

Use general form \(\int_0^\infty z^n e^{-z^2} dz = n! (n-1)(n-2) \ldots (1) \)

\[\Rightarrow \langle r \rangle = \frac{a_0}{4} 3! \frac{3a_0}{2} a_0 \]

Average & most likely distance is not same. Why?

Answer is in the form of the radial Prob. Density: Not symmetric
Radial Probability Distribution $P(r) = r^2 R(r)$

Because $P(r) = r^2 R(r)$; No matter what $R(r)$ is for some n,
The prob. Of finding electron inside the nucleus = 0!!

Normalized Spherical Harmonics & Structure in H Atom
Excited States ($n>1$) of Hydrogen Atom: Birth of Chemistry!

Features of Wavefunction in θ & ϕ:

Consider $n = 2$, $l = 0$ $\Rightarrow \psi_{200} = \text{Spherically Symmetric (last slide)}$

Excited States ($3 \&$ each with same E_i):

$\psi_{211}, \psi_{201}, \psi_{21-1}$ are all $2p$ states

$$\psi_{211} = R_{21} Y_l = \left(\frac{1}{\pi} \right) \left(\frac{Z}{a_s} \right)^{3/2} \left(\frac{Z}{r} \right) e^{-\frac{Z}{a_s}} \sin \theta \phi$$

$|\psi_{211}|^2 = |\psi_{211} |^2 \sin^2 \theta$

Max at $\theta = \frac{\pi}{2}$, min at $\theta = 0$. Symm in ϕ.

What about ($n=2$, $l=1, m_i = 0$)?

$\psi_{21m} = R_{21m}(r) Y_l^{m}(\theta, \phi)$.

$Y_l^{m}(\theta, \phi) = \frac{1}{\sqrt{2}} Y_l^m \cos m \phi$

Function is max at $\theta = 0$, min at $\theta = \frac{\pi}{2}$.

We call this $2p_\phi$ state because of its extent in z.

Remember Principle of Linear Superposition

for the TISE which is basically a simple differential equation:

$$-\frac{\hbar^2}{2m} \nabla^2 \psi + U \psi = E \psi$$

Principle of Linear Superposition \Rightarrow If ψ_1 and ψ_2 are sol. of TISE then a "designer" wavefunction made of linear sum $\psi' = a \psi_1 + b \psi_2$ is also a sol. of the diff. equation!

To check this, just substitute ψ' in place of ψ & convince yourself that

$$-\frac{\hbar^2}{2m} \nabla^2 \psi' + U \psi = E \psi$$

The diversity in Chemistry and Biology DEPENDS on this superposition rule.
Linear Superposition Principle means allows me to "cook up" wavefunctions

\[\psi_{2p_x} = \frac{1}{\sqrt{2}} [\psi_{211} + \psi_{21-1}] \] has electron "cloud" oriented along x axis

\[\psi_{2p_y} = \frac{1}{\sqrt{2}} [\psi_{211} - \psi_{21-1}] \] has electron "cloud" oriented along y axis

So from 4 solutions \(\psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1} \rightarrow 2s, 2p_x, 2p_y, 2p_z \)

Similarly for \(n=3 \) states ...and so on ...can get very complicated structure in \(\theta \) & \(\phi \)......which I can then mix & match to make electrons "most likely" to be where I want them to be!

\[n = 2, \ell = 1, m_\ell = \pm 1 \quad n = 3, \ell = 1, m_\ell = 0 \quad n = 3, \ell = 2, m_\ell = 0 \]
Cross Sectional View of Hydrogen Atom prob. densities in r, θ, φ

Birth of Chemistry (Can make Fancy Bonds → Overlapping electron “clouds”)

What’s the electron “cloud”: It’s the Probability Density in r, θ, φ space!

More Radial Probabilities $P(r)$ Vs. r/a_0

Net Prob. densities for $n=2$ states

spherically symmetric
dumbbell
Doughnut (toroid)
Transition Between States In Quantum Systems

In formulating the Hydrogen Atom, Bohr was obliged to postulate that the frequency of radiation emitted by an atom dropping from energy level E_n to a lower level E_m is:

$$f = \frac{E_n - E_m}{h}$$

This relationship rises naturally in Quantum Mechanics, consider for simplicity a system in which an electron only in the x direction: The time-dependent Wavefunction $\Psi_n(x,t) = \psi_n(x)e^{-i\frac{E_n}{\hbar}t}$;

$$\langle x \rangle = \int_{-\infty}^{\infty} x\psi_n^*\psi_n dx = \text{constant in time, does not oscillate, no radiation occurs}$$

But, due to an external perturbation lasting some time, electron shifts from one state (m) to another(n) In this period wavefunction of electron is a linear superposition of two possible states $\Psi = a\Psi_n + b\Psi_m; \quad a' = \text{prob. of electron in state n and b'} = \text{prob. of electron in state m}; \quad |a|^2 + |b|^2 = 1$

Initially $a=1, b=0$ and finally $a=0, b=1$. While the electron is in either state there is no radiation but when it is in the midst of transition from m \rightarrow n, both a and b have non-vanishing values and radiation is produced.

Expectation value for composite wavefunction $\langle x \rangle = \int x\Psi^*\Psi dx$;

$$\langle x \rangle = \int_{-\infty}^{\infty} x(a\Psi_n^*\Psi_n + b\Psi_n^*\Psi_m + b\Psi_m^*\Psi_n + a\Psi_m^*\Psi_n)dx$$

Use $e^{i\theta} = \cos \theta + i \sin \theta$ and $e^{-i\theta} = \cos \theta - i \sin \theta$ in the above and consider just the REAL part of expression for the last two terms, it varies with time as

$$\cos\left(\frac{E_m - E_n}{\hbar}t\right) = \cos 2\pi \left(\frac{E_m - E_n}{\hbar}t\right) = \cos 2\pi ft$$

So the $\langle x \rangle$ of the electron oscillates with frequency f and one has a nice electric dipole analogy \Rightarrow Hence radiative transitions!

Similarly for particle in an infinite well or harmonic oscillator ...
What’s So “Magnetic” about \(m_1 \)?

Precessing electron \(\rightarrow \) Current in loop \(\rightarrow \) Magnetic Dipole moment \(\mu \)

The electron’s motion \(\rightarrow \) hydrogen atom is a dipole magnet.

The “Magnetism” of an Orbiting Electron

Precessing electron \(\rightarrow \) Current in loop \(\rightarrow \) Magnetic Dipole moment \(\mu \)

Electron in motion around nucleus \(\Rightarrow \) circulating charge \(\Rightarrow \) current \(i \)

\[
i = -\frac{e}{T} = -\frac{e}{2\pi r} = -\frac{ep}{2\pi mr}; \quad \text{Area of current loop } A = \pi r^2
\]

Magnetic Moment \(|\mu| = iA = \left(-\frac{e}{2m} \right) r p \); \quad \text{Like the } \mathbf{L}, \text{ magnetic moment } \mathbf{\mu} \text{ also precesses about "z" axis}

\[
\mathbf{\mu} = \left(\frac{-e}{2m} \right) \mathbf{r} \times \mathbf{p} = \left(\frac{-e}{2m} \right) \mathbf{L}
\]

\[
z \text{ component, } \mu_z = \left(\frac{-e}{2m} \right) L_z = \left(\frac{-e\hbar}{2m} \right) m_z = -\mu_B m_z = \text{quantized}
\]
Quantized Magnetic Moment

\[\mu_z = \left(-\frac{e}{2m} \right) L_z = \left(-\frac{e\hbar}{2m} \right) m_i \]

\[= -\mu_y m_i \]

\[\mu_y = \text{Bohr Magnetron} \]

\[= \left(\frac{e\hbar}{2m_e} \right) \]

Why all this? Need to find a way to break the Energy Degeneracy & get electron in each \((n, l, m_i)\) state to identify itself, so we can "talk" to it and make it do our bidding:

"Walk this way, talk this way!"

The “Magnetism” of an Orbiting Electron

Precessing electron \(\rightarrow\) Current in loop \(\rightarrow\) Magnetic Dipole moment \(\mu\)

Electron in motion around nucleus \(\Rightarrow\) circulating charge \(\Rightarrow\) current \(i\)

\[i = -\frac{e}{T} = -\frac{e}{2\pi r} = -\frac{e\rho}{2\pi mr^2}; \quad \text{Area of current loop } A = \pi r^2 \]

Magnetic Moment \(|\mu| = |iA| = \left(-\frac{e}{2m} \right) r \rho; \]

\[\tilde{\mu} = \left(-\frac{e}{2m} \right) \tilde{r} \times \tilde{B} = \left(-\frac{e}{2m} \right) \tilde{L} \]

Like the \(\tilde{L}\), magnetic moment \(\tilde{\mu}\) also precesses about "z" axis

\(z\) component, \(\mu_z = \left(-\frac{e}{2m} \right) L_z = \left(-\frac{e\hbar}{2m} \right) m_i = -\mu_y m_i = \text{quantized!} \)
Bar Magnet Model of Magnetic Moment

In external B field, magnet experiences a torque which tends to align it with the field direction.

If the magnet is spinning, torque causes magnet to precess around the ext. B field with a constant frequency:
Larmor frequency

“Lifting” Degeneracy: Magnetic Moment in External B Field

Apply an External B field on a Hydrogen atom (viewed as a dipole).

Consider \(\vec{B} \parallel \vec{Z} \) axis (could be any other direction too).

The dipole moment of the Hydrogen atom (due to electron orbit) experiences a Torque \(\vec{\tau} = \vec{\mu} \times \vec{B} \) which does work to align \(\vec{\mu} \parallel \vec{B} \) but this can not be (same Uncertainty principle argument).

⇒ So, Instead, \(\vec{\mu} \) precesses (dances) around \(\vec{B} \), like a spinning top:

The Azimuthal angle \(\phi \) changes with time:

Look at Geometry: projection along x-y plane: \(|dL| = L \sin \theta \, d\phi \)

\[d\phi = \frac{|dL|}{L \sin \theta} \]

Change in Ang Mom.

\[\frac{dL}{dt} = L \sin \theta \, q \frac{dB}{dt} \sin \theta \]

Larmor Freq

\[\omega_L = \frac{qB}{2m} \]

\(\omega_L \) depends on B, the applied external magnetic field.
“Lifting” Degeneracy: Magnetic Moment in External B Field

Work done to reorient $\vec{\mu}$ against B field: $dW = d\theta - \mu B \sin \theta d\theta$

$dW = d(\mu B \cos \theta)$: This work is stored as orientational Potential Energy U

$dW = -dU$

Define Magnetic Potential Energy $U = -\vec{\mu} \cdot \vec{B} = -\mu \cos \theta B = -\mu_0 B$

Change in Potential Energy $U = -\frac{e\hbar m_B}{2m_e} B = \hbar \omega m_i$

Zeeman Effect in Hydrogen Atom

In presence of External B Field, Total energy of H atom changes to

$E = E_0 + \hbar \omega m_i$

So the Ext. B field can break the E degeneracy "organically" inherent in the H atom. The Energy now depends not just on n but also m_i.

4E: The Quantum Universe

Lecture 29, May 24
Vivek Sharma
modphys@hepmail.ucsd.edu
Zeeman Effect Due to Presence of External B field

Energy Degeneracy Is Broken

<table>
<thead>
<tr>
<th>n = 2, ℓ = 1</th>
<th>Magnetic field present</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m_\ell = -1)</td>
</tr>
<tr>
<td></td>
<td>(m_\ell = 0)</td>
</tr>
<tr>
<td></td>
<td>(m_\ell = +1)</td>
</tr>
</tbody>
</table>

\[\hbar \omega_0, \ (\hbar \omega_0 - \hbar \omega_L), \ (\hbar \omega_0 + \hbar \omega_L) \]

| n = 1, ℓ = 0 | m_\ell = 0 |

\[\omega_0, \ (\omega_0 - \omega_L), \ (\omega_0 + \omega_L) \]

Spectrum without magnetic field | Spectrum with magnetic field present

Electron has “Spin”: An additional degree of freedom

Electron possesses additional "hidden" degree of freedom : "Spinning around itself"!

Spin Quantum #: \(s = \frac{1}{2} \) (either Up or Down)

How do we know this? ⇒ Stern-Gerlach expt

Spin Vector \(\vec{S} \) (a form of angular momentum) is also Quantized

\[|\vec{S}| = \sqrt{s(s+1)} \ \hbar = \frac{3}{4} \ \hbar \]

& \(S_z = m_s \ \hbar; \ m_s = \pm \frac{1}{2} \)

Spinning electron is an entity defying any simple classical description.hidden D.O.F

Spin angular momentum \(S \) also exhibits Space quantization
Stern-Gerlach Expt ⇒ An additional degree of freedom: “Spin”

In an inhomogeneous field perpendicular to beam direction, magnetic moment μ experiences a force F_z whose direction depends on Z component of the net magnetic moment & inhomogeneity dB/dz. The force deflects magnetic moment up or down. **Space Quantization means expect** $(2l + 1)$ **deflections.** For $l = 0$, expect **all** electrons to arrive on the screen at the center (no deflection).

\[F = -VU_{mh} = -V(-\vec{\mu} \cdot \vec{B}) \]

When gradient only along z, \(\frac{\partial B}{\partial z} \) moves particle up or down

(in addition to torque causing magnetic moment $\vec{\mu}$ to precess about B field direction)

An Additional degree of freedom: “Spin” for lack of a better name!

This was a big surprise for Stern-Gerlach! They had accidentally discovered a new degree of freedom for electron: “spin” which can take only two orientations for angular momentum S: up or down. Leads to a new quantum number $s = 1/2$. As a result:

- **Z Component of Spin Angular Momentum** $S_z = m \hbar$
 - The magnitude $|S| = \sqrt{s(s+1)} \hbar$ is FIXED, never changes!
 - Allowed orientations are $s(s+1) = 2$
 - $\vec{S} = \vec{\mu}_z$: The corresponding Spin Magnetic Moment
What Stern & Gerlach Saw in l=0 Silver Atoms

Picture changes instantaneously as the external Field is switched off or on…discovery!

Four (not 3) Numbers Describe Hydrogen Atom → n,l,mₗ,mₛ

"Spinning" charge gives rise to a dipole moment $\vec{\mu}$

Imagine (semi-classically, incorrectly!) electron as sphere: charge q, radius r
Total charge uniformly distributed: $q = \sum_i q_i$;
as electron spins, each "chargelet" rotates \Rightarrow current \Rightarrow dipole moment $\vec{\mu}_i$

$$\vec{\mu}_i = \frac{q}{2m_e} \sum_i \vec{r}_i = g \frac{q}{2m_e} \vec{S} \quad g = 2$$

In a Magnetic Field \vec{B} \Rightarrow magnetic energy due to spin $U = \vec{\mu}_s \cdot \vec{B}$

Net Angular Momentum in H Atom $\vec{J} = \vec{L} + \vec{S}$
Net Magnetic Moment of H atom:

$$\vec{\mu} = \vec{\mu}_s + \vec{\mu}_l = \frac{e}{2m_e} (\vec{L} + g\vec{S})$$

Notice that since $g = 2$, net dipole moment vector $\vec{\mu}$ is not \parallel to \vec{J}

(There are many such "ubiquitous" quantum numbers for elementary particles!)
Magnetic Energy in an External B Field

Contributions from Orbital and Spin motions. Defining Z axis to be the orientation of the B field:

\[U = -\mu_0 B = \frac{e}{2m} B \left(L_z + gS_z \right) = \frac{\hbar}{2m} B \left(m_s + g m_s \right) \]

Example: Zeeman spectrum in B=1T produced by Hydrogen initially in n=2 state after taking spin into account: \(n=2 \Rightarrow E_z = -13.6eV / 2^2 = -3.40eV \)

Since \(m_s = 0, \pm 1 \), orbital contribution to Magnetic energy \(U = m_s \hbar \omega \),

This splits energy levels to \(E = E_z \pm \hbar \omega \); for \(m_s = \pm 1 \) states

These states get further split in pairs due to spin magnetic moment

Since \(g=2 \) and \(m_s = \pm \frac{1}{2} \), spin energy is again Zeeman energy=\(\hbar \omega_s \),

As a result electrons in this shell have one of the following energies

\[\begin{bmatrix} E_z \pm \hbar \omega_s \end{bmatrix} \]

This leads to a variety of allowed (\(\Delta(m_s + m_l) = 0, \pm 1 \)) energy transitions with different intensities (Principal and satellites) which are visible when B field is large (ignore LS coupling)

See energy level diagram on next page

Doubling of Energy Levels Due to Spin Quantum Number

Under Intense B field, each \(\left\{ n, m_l \right\} \) energy level splits into two depending on spin up or down

\[n = 2, \quad m_{\ell} = \begin{cases} +1 \\ 0 \\ -1 \end{cases} \]

\[n = 1, \quad m_{\ell} = 0 \]

With spin

Without spin

l = 1

l = 0

Spectrum without spin

Spectrum with spin

IN PRESENCE OF EXTERNAL B FIELD
Spin-Orbit Interaction: L and S Momenta are Linked Magnetically

Electron revolving around Nucleus finds itself in a "internal" B field because in its frame of reference, the nucleus is orbiting around it.

This B field, due to orbital motion, interacts with electron's spin dipole moment \(\hat{\mu} \),

\[U_m = -\hat{\mu} \cdot \vec{B} \Rightarrow \text{Energy larger when } S \parallel \vec{B}, \text{smaller when anti-parallel} \]

\(\Rightarrow \) States with same \((n, l, m_l)\) but diff. spins \(\Rightarrow\) energy level splitting/doubling due to \(\hat{S}\)

Spin-Orbit Interaction: Angular Momenta are Linked Magnetically

This B field, due to orbital motion, interacts with electron's spin dipole moment \(\hat{\mu} \),

\[U_m = -\hat{\mu} \cdot \vec{B} \Rightarrow \text{Energy larger when } \hat{S} \parallel \vec{B}, \text{smaller when anti-parallel} \]

\(\Rightarrow \) States with same \((n, l, m_l)\) but diff. spins \(\Rightarrow\) energy level splitting/doubling due to \(\hat{S}\)

UNDER NO EXTERNAL B FIELD THERE IS STILL A SPLITTING!

Sodium Doublet & LS coupling
Vector Model for Total Angular Momentum J

Neither Orbital nor Spin angular Momentum are conserved separately!

$J = L + S$ is conserved so long as there are no external torques present.

Rules for Total Angular Momentum Quantization:

- $|J| = \sqrt{j(j+1)} \hbar$ with $j = |l + s|, l + s - 1, l + s - 2, \ldots, |l - s|$
- $J_z = m_J \hbar$ with $m_J = j, j - 1, j - 2, \ldots, -j$

Example: state with $(l = 1, s = \frac{1}{2})$

- $j = \frac{3}{2} \Rightarrow m_J = -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$
- $j = \frac{1}{2} \Rightarrow m_J = \pm \frac{1}{2}$

In general, m_J takes $(2j + 1)$ values

\Rightarrow Even # of orientations
Addition of Orbital and Spin Angular Momenta

When \(l = 1, s = \frac{1}{2} \); According to Uncertainty Principle, the vectors can lie anywhere on the cones, corresponding to definite values of their z component.

Complete Description of Hydrogen Atom

Full description of the Hydrogen atom:
\[\{n, l, m_s, m_l\} \]

\(\downarrow \)

LS Coupling

\(\downarrow \)

\(\{n, l, j, m_j\} \)

corresponding to 4 D.O.F.

How to describe multi-electrons atoms like He, Li etc?

How to order the Periodic table?

- Four guiding principles:
 - Indistinguishable particle & Pauli Exclusion Principle
 - Independent particle model (ignore inter-electron repulsion)
 - Minimum Energy Principle for atom
 - Hund’s “rule” for order of filling vacant orbitals in an atom
Multi-Electron Atoms : >1 electron in orbit around Nucleus

In Hydrogen Atom $\psi(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi) = \{n,l,m_j\}$

In n-electron atom, to simplify, ignore electron-electron interactions complete wavefunction, in "independent"particle approx" :

$$\psi(1,2,3,..n) = \psi(1) \psi(2) \psi(3) ... \psi(n) \quad ??$$

Complication \rightarrow Electrons are identical particles, labeling meaningless!

Question: How many electrons can have same set of quantum #s?

Answer: No two electrons in an atom can have SAME set of quantum #s (if not, all electrons would occupy 1s state (least energy)... no structure!!

Example of Indistinguishability: electron-electron scattering

Small angle scatter \rightarrow large angle scatter

If we cant follow electron path, don’t know between which of the two scattering events actually happened

Helium Atom: Two electrons around a Nucleus

In Helium, each electron has : kinetic energy + electrostatic potential energy

If electron "1" is located at r_1 & electron "2" is located at r_2, then TISE has terms like:

$$H_1 = \frac{-\hbar^2}{2m} \nabla^2 + \frac{1}{4\pi \epsilon_0}e^2 \frac{1}{|r-r|}$$

such that $H = H_1 + H_2$ & H_1, H_2 are same except for "label"

Independent Particle Approx \Rightarrow ignore repulsive $U=\frac{e^2}{|r_1-r_2|}$ term

$H_1, H_2 \Rightarrow$ Helium WaveFunction: $\psi = \psi(r_1, r_2)$, Probability $P = \psi^*(r_1, r_2) \psi(r_1, r_2)$

But if we exchange location of (identical, indistinguishable) electrons $\Rightarrow |\psi(r_1, r_2)| = |\psi(r_2, r_1)|$

In general, when $\psi(r_1, r_2) = \psi(r_2, r_1)$, Bose-Einstein System (made of photons, e.g)

when $\psi(r_1, r_2) = -\psi(r_2, r_1)$, Fermionic System (made of electron, proton e.g)

\Rightarrow Helium wavefunction must be ODD, if electron "1" is in state a & electron "2" is in state b

Then the not wavefunction $\psi_{ab}(r_1, r_2) = \psi_a(r_1) \psi_b(r_2)$ satisfies

$$H \psi_{ab}(r_1, r_2) = E_a \psi_a(r_1) \psi_b(r_2)$$

and the sum

$$|H_1 + H_2| \psi_a(r_1) \psi_b(r_2) = (E_a + E_b) \psi_a(r_1) \psi_b(r_2)$$

Total Helium Energy $E = E_a + E_b = \text{sum of Hydrogen atom like } 1$
Helium Atom: Two electrons around a Nucleus

Helium wavefunction must be ODD \(\Rightarrow \) anti-symmetric: \(\psi_{a,b}(r_1,r_2) = -\psi_{b,a}(r_1,r_2) \)

So it must be that \(\psi_{a,b}(r_1,r_2) = \psi_{b,a}(r_2,r_1) \)

It is impossible to tell, by looking at probability or energy which particular electron is in which state.

If both are in the same quantum state \(a=b \) & \(\psi_{a,a}(r_1,r_2) = \psi_{a,a}(r_2,r_1) \Rightarrow 0 \ldots \) [Pauli Exclusion principle]

General Principles for Atomic Structure for n-electron system:

1. n-electron system is stable when its total energy is minimum
2. Only one electron can exist in a particular quantum state in an atom...not 2 or more !
3. Shells & Subshells in Atomic Structure:
 (a) ignore inter-electron repulsion (crude approx.)
 (b) think of each electron in a constant "effective" mean Electric field
 (Effective field: "Seen" Nuclear charge \(+Ze \) reduced by partial screening due to other electrons "buzzing" closer (in \(r \)) to Nucleus)
 Electrons in a SHELL: have same quantum number \(n \), are at similar \(<r> \) from nucleus, have similar energies
 Electrons in a SubShell: have same principal quantum number \(n \)
 - Energy depends on \(l \), those with lower \(l \) closer to nucleus, more tightly bound
 - all electrons in sub-shell have same energy, with minor dependence on \(m_l, m_s \)

Shell & Sub-Shell Energies & Capacity

1. Shell & subshell capacity limited due to Pauli Exclusion principle
2. Shell is made of sub-shells (of same principal quantum # \(n \))
3. Subshell \(= (n,l) \), given \(n \Rightarrow l = 0,1,2,3...(n-1), \)
 \[\text{for any } l \Rightarrow m_l = 0, \pm 1, \pm 2,.. \Rightarrow 2(l+1) \text{, } m_s = \pm \frac{1}{2} \]
 \[\Rightarrow \text{ Max. } \# \text{ of electrons in a shell } = \sum \text{ subshell capacity} \]
 \[N_{\text{MAX}} = \sum_{l=0}^{2l+1} 2 \left(1 + 3 + 5 + ... + (2(n-1) + 1) \right) = 2n \left(\frac{1}{2} (1 + (2n - 1)) \right) = n^2 \]
4. The "K" Shell \((n=1) \) holds 2 electrons, "L" Shell \((n=2) \) holds 8 electrons, "M" shell \((n=3) \) holds 18 electrons
5. Shell is closed when fully occupied
6. Sub-Shell closed when
 (a) \(\sum m_l = 0, \sum m_s = 0 \Rightarrow \text{ Effective charge distribution= symmetric} \)
 (b) Electrons are tightly bound since they "see" large nuclear charge
 (c) Because \(\sum L_l = 0 \Rightarrow \text{ No dipole moment} \Rightarrow \text{ No ability to attract electrons} \Rightarrow \text{ Inert Noble gas!} \)
6. Alkali Atoms: have a single "s" electron in outer orbit; nuclear charge heavily shielded by inner shell electrons
 \(\Rightarrow \) very small binding energy of "valence" electron
 \(\Rightarrow \) large orbital radius of valence electron
Electronic Configurations of elements from Lithium to Neon

Hund's Rule: Whenever possible
- electron in a sub-shell remain unpaired
- States with spins parallel occupied first
- Because electrons repel when close together
- \rightarrow electrons in same sub-shell (l) and same spin
 - Must have diff. m_l
 - (very diff. angular distribution)
- Electrons with parallel spin are further apart
 - Then when anti-parallel \Rightarrow lesser E state
 - Get filled first

Periodic table is formed

Topics In Particle Physics

- Cosmic Messengers!
 - Dirac, Anderson and the Positron!
 - antimatter
- Fundamental forces in nature
- How elementary particles are produced: Accelerators
- Classification of Particle and How we know this
 - Conservation laws
- Colored Quarks and Quantum Chromodynamics!
- Electroweak theory and Standard model
- The Higgs Particle and Large Hadron Collider
- Beyond the Standard model: Supersymmetry & Strings
Fundamental Particle Physics

What are the elementary constituents of matter?

What are the forces that control their behaviour at the most basic level?

Size of Things

Summary of different scales of observation and the instruments used to observe them:

- **Big Bang**: 10^{-34}
- **Observables**
 - SUSY particle?
 - Higgs?
 - Z/WW
 - Proton
 - Nuclei
 - Atom
 - Virus
 - Cell
 - Earth radius
 - Earth to Sun
 - Galaxies
 - Radius of observable Universe

- **Instruments**
 - Accelerators
 - LHC
 - Electron Microscope
 - Microscope
 - Telescope
 - Radio Telescope
Probing The Cosmic Onion: Experimentally

Rutherford (1909): Nuclear atom (proton)
Chadwick (1932): Discovers neutron
SLAC (1968): Quarks in neutrons and protons

Power of Microscope

Wavelength of probe radiation should be smaller than the object to be resolved

\[\lambda << \frac{h}{p} = \frac{hc}{E} \]

<table>
<thead>
<tr>
<th>Object</th>
<th>Size</th>
<th>Energy of Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom</td>
<td>10^{-19} m</td>
<td>0.00021 GeV (electrons)</td>
</tr>
<tr>
<td>Nucleus</td>
<td>10^{-19} m</td>
<td>0.01 GeV (alphas)</td>
</tr>
<tr>
<td>Nucleon</td>
<td>10^{-19} m</td>
<td>0.1 GeV (electrons)</td>
</tr>
<tr>
<td>Quarks</td>
<td>?</td>
<td>> 1 GeV (electrons)</td>
</tr>
</tbody>
</table>

Radioactive sources give energies in the range of MeV

Need accelerators for higher energies.

electronic eyes
Cosmic Messengers

High energy particles bombard the earth at large rate

Discovery of new subatomic particles: Muon and positron!

Relativity, Dirac and Anti-matter

\[E^2 = (pc)^2 + (mc^2)^2 \Rightarrow E = \pm \sqrt{(pc)^2 + (mc^2)^2} \]

What does the negative energy solution imply?!

- Dirac postulated that all negative energy states were filled with electrons. They exert no net force on any thing and thus are unobservable
- Used Pauli Excl. principle to claim that only “holes” in this infinite sea of negative energy states observable
- Holes would act as positive charge with positive energy
 - Anderson’s discovery of positron!
Discovery of Positron From Cosmic Rays

Pair Production: Photoelectric effect with a negative energy electron!

Photon collides with the negative energy electron and excites it to positive energy state, leaving a "hole" that appears as positron.
Pair Production Photographed in B field: Note Curvature

All particles have an anti-matter partner!
Look Ma: Antimatter!

forces of nature

- Electricity
- Magnetism
- Light
- Beta decay
- Neutrino interactions
- neutrinos
- Photons
- Gravitation
- Colored mechanics

Electric-magnetic

Electroweak Interactions

Weak interactions

Strong interactions

Standard Model

General relativity

Universal gravitation

Squeezed geometry

\[? \]
Quanta of Interaction

Interaction between two matter particles e.g. electrons

Newton
Force on A depends on where B is,
But how does A know where B is?

Interaction through Fields

Maxwell
B produces a field, characterized by a number (e/n²) at every point in space.
Force on A is towards the direction in which the number changes fastest
A determines its response by "sniffing" in its immediate neighborhood

BUT - still no tangible connection between A and B

Forces are produced by exchange of force or messenger particles

Feynman:
B continually emits carriers of the electromagetic force - photons
Electron A absorbs the photons and recoils - repulsive force between the electrons,
In Quantum Field Theory both signs of impulse are possible.

Force Field

Forces are transmitted by the exchange of (force) particles between (matter) particles

Explains the differences between forces
To verify: look for force particles

Range of a Force \(\propto \frac{1}{\text{mass of exchange particle}} \)

Observe 4 forces
There are 4 different types of force fields
The Four Fundamental Forces

Strong
- **Gluons (g)**
- **Quarks**
- **Mesons, Baryons**
- **Nuclei**

Electromagnetic
- **Photon**
- **Atoms, Light, Chemistry, Electronics**

Gravitational
- **Graviton ?**
- **Solar system, Galaxies, Black holes**

Weak
- **Bosons (W, Z)**
- **Neutron decay, Beta radioactivity, Neutrino interactions, Burning of the sun**

Forces in Nature

Table 15.1 Particle Interactions

<table>
<thead>
<tr>
<th>Interaction (Force)</th>
<th>Particles Acted on by Force</th>
<th>Relative Strength*</th>
<th>Typical Lifetimes for Decays via a Given Interaction</th>
<th>Range of Force</th>
<th>Force-Carrying Particle Exchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Quarks, hadrons</td>
<td>1</td>
<td>$\leq 10^{-20}$ s</td>
<td>Short ($=1$ fm)</td>
<td>Gluon</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>Charged particles</td>
<td>$= 10^{-2}$</td>
<td>$\approx 10^{-16}$ s</td>
<td>Long (∞)</td>
<td>Photon</td>
</tr>
<tr>
<td>Weak</td>
<td>Quarks, leptons</td>
<td>$= 10^{-6}$</td>
<td>$\geq 10^{-10}$ s</td>
<td>Short ($=10^{-5}$ fm)</td>
<td>W, Z bosons</td>
</tr>
<tr>
<td>Gravitational</td>
<td>All particles</td>
<td>$= 10^{-45}$</td>
<td>?</td>
<td>Long (∞)</td>
<td>Graviton*</td>
</tr>
</tbody>
</table>

*For two u quarks at 3×10^{-13} m.

*bNot experimentally detected.
Compton Scattering, Pair Production and Annihilation

(a) \[\gamma \rightarrow e^+ e^- \]

(b) \[e^+ e^- \rightarrow \gamma \]

(c) \[\gamma + e \rightarrow e^+ e^- + \gamma \]

Strong Interaction Between Protons and Neutrons

Uncertainty Principle and range of strong force
Weak Force of Beta Decay: Uncertainty Principle

(a)

\[\nu_\mu \rightarrow e^- + \pi^+ \]

(b)

\[e^- \rightarrow \mu^- + \nu_\mu \]

Unification of Physical Laws

- **Quantum mechanics:** wave-particle duality, superposition, probabilities
- **Special relativity:** spacetime geometry, relativity of motion
- **Newtonian mechanics:** universal gravitation, force and acceleration
- **Quantum field theory:** virtual particles, renormalization
- **General relativity:** equivalence principle, dynamic spacetime

Most profound advances in fundamental physics are those when the principles of different theories are reconciled within a single new framework. We do not yet know what guiding principle underlies the unification of quantum field theory, as embodied in the Standard Model, with general relativity.
Unification of Forces

Forces Merge at High Energies

- Strength of Force
- Energy in GeV

Analogy: Are steam, water and ice manifestation of the same thing?

Cosmic Ray Smashing Through Nucleus

- Nuclear debris
- Hadrons!
- High energy Sulphur
- Fluorine
- Pions (16)
Particle Categories: Hadrons & Leptons

<table>
<thead>
<tr>
<th>Category</th>
<th>Particle Name</th>
<th>Symbol</th>
<th>Mass (MeV/c²)</th>
<th>B</th>
<th>L_s</th>
<th>L_µ</th>
<th>L_τ</th>
<th>Lifetime (s)</th>
<th>Principal Decay Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptons</td>
<td>Electron</td>
<td>e^-</td>
<td>0.511</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>e^- → ν_µ e+</td>
</tr>
<tr>
<td></td>
<td>Positron</td>
<td>e^+</td>
<td>0.511</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>e^+ → ν_µ e-</td>
</tr>
<tr>
<td></td>
<td>Muon</td>
<td>μ^-</td>
<td>105.7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>μ^- → ν_µ μ+</td>
</tr>
<tr>
<td></td>
<td>Antimuon</td>
<td>μ^+</td>
<td>105.7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>μ^+ → ν_µ μ-</td>
</tr>
<tr>
<td></td>
<td>Tau</td>
<td>τ^-</td>
<td>1794</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3.5 × 10^-13</td>
<td>τ^- → ν_µ τ+</td>
</tr>
<tr>
<td></td>
<td>Antitau</td>
<td>τ^+</td>
<td>1794</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3.5 × 10^-13</td>
<td>τ^+ → ν_µ τ-</td>
</tr>
<tr>
<td>Hadrons</td>
<td>Proton</td>
<td>p</td>
<td>938.3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>p → 2π</td>
</tr>
<tr>
<td></td>
<td>Antiproton</td>
<td>p^-</td>
<td>939.6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>p^- → 2π</td>
</tr>
<tr>
<td></td>
<td>Neutron</td>
<td>n</td>
<td>939.6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>n → 2π</td>
</tr>
<tr>
<td></td>
<td>Antineutron</td>
<td>n^-</td>
<td>939.6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>n^- → 2π</td>
</tr>
<tr>
<td></td>
<td>Lambda</td>
<td>Λ^0</td>
<td>1116.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.69 × 10^-8</td>
<td>Λ^0 → pπ</td>
</tr>
<tr>
<td></td>
<td>Sigma</td>
<td>Σ^+</td>
<td>1188.8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.00 × 10^-8</td>
<td>Σ^+ → p π^0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Σ^-</td>
<td>1188.8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.00 × 10^-8</td>
<td>Σ^- → p π^0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Σ^0</td>
<td>1192.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.45 × 10^-8</td>
<td>Σ^0 → p π^0</td>
</tr>
<tr>
<td></td>
<td>Charm</td>
<td>Λ^+</td>
<td>1230</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.55 × 10^-10</td>
<td>Λ^+ → p π^+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Λ^-</td>
<td>1230</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.55 × 10^-10</td>
<td>Λ^- → p π^-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Λ^0</td>
<td>1230</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.55 × 10^-10</td>
<td>Λ^0 → p π^0</td>
</tr>
<tr>
<td></td>
<td>Xi</td>
<td>Ξ^-</td>
<td>1284</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.84 × 10^-10</td>
<td>Ξ^- → p π^-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ξ^0</td>
<td>1284</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.84 × 10^-10</td>
<td>Ξ^0 → p π^0</td>
</tr>
<tr>
<td></td>
<td>Omega</td>
<td>Ω^-</td>
<td>1672</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.88 × 10^-10</td>
<td>Ω^- → 2ππ</td>
</tr>
</tbody>
</table>

Particle Accelerators

\[\lambda = \frac{h}{p} \quad , \quad E = \sqrt{(pc)^2 + (mc^2)^2} \]
Relativistic Force & Acceleration

\[\hat{p} = \frac{m\dot{u}}{\sqrt{1-(u/c)^2}} = \gamma m\dot{u} \]

Relativistic Force And Acceleration

Since Acceleration \(\ddot{u} = \frac{d\dot{u}}{dt} \) [rate of change of velocity]

\[\ddot{u} = \frac{F}{m[1-(u/c)^2]^{3/2}} \]

Note: As \(u/c \rightarrow 1 \), \(\ddot{u} \rightarrow 0 \) !!!

It’s harder to accelerate when you get closer to speed of light

Linear Particle Accelerator: Parallel Plates With Potential Difference

Charged particle \(q \) moves in straight line in a uniform electric field \(E \) with speed \(\dot{u} \) accelerates under force \(F = qE \)

\[|\dot{u}| = \left| \frac{d\dot{u}}{dt} \right| = \frac{F}{m} \left(\frac{1}{1-(u/c)^2} \right)^{1/2} = \frac{qE}{m} \left(\frac{1}{1-(u/c)^2} \right)^{1/2} \]

larger the potential difference \(V \) across plates, larger the force on particle

Under force, work is done on the particle, it gains Kinetic energy

New Unit of Energy

1 eV = 1.6x10\(^{-19}\) Joules
1 MeV = 1.6x10\(^{-13}\) Joules
1 GeV = 1.6x10\(^{-10}\) Joules
Linear Accelerator: 50 Billion Volts Accelerating Potential

\[\ddot{a} = \frac{eE}{m} \left[1 - \left(\frac{u}{c} \right)^2 \right]^{3/2} \]

Both Rings Housed in Current PEP Tunnel

Discovery of Quarks: Constituents of Proton
High Energy Proton smashing into a Proton Rich Target

Electron knocked Out of an atom (road kill !)

Incident proton

7 charged pions

Λ → p π

7 pions, 1 Kaon, 1 proton

Magnetic Confinement & Circular Particle Accelerator

Classically

\[F = m \frac{v^2}{r} \]
\[qvB = m \frac{v^2}{r} \]

\[F = \frac{dp}{dt} = \frac{d(\gamma mu)}{dt} = \gamma m \frac{du}{dt} = quB \]
\[du = \frac{u^2}{r} \]
(Centripetal acceleration)

\[\gamma m \frac{u^2}{r} = quB \Rightarrow \gamma mu = qBr \Rightarrow p = qBr \]
Charged Form of Matter & Anti-Matter in a B Field

Antimatter form of electron = Positron (e+)
Same Mass but opposite Charge
Positron curls the other way from electron in a B Field

Accelerating Electrons Thru RF Cavities
A Circular Accelerator: Using B Field to Confine the electron and RF cavity to power it.

Circular Particle Accelerator: LEP @ CERN, Geneve

Accelerated electron through an effective voltage of 100 Billion Volts!
To be upgraded to 7 Trillion Volts by 2007.

circular track for accelerating electron

French Border
Swiss Border
Geneva Airport
Inside A Circular Particle Accelerator Tunnel: Monorail!

In Tunnel 150m underground, 27km ring of Magnets Keep electron in Circular Orbit
French Grad Student fixing magnet
Sequence of Events Following e^+e^- Annihilation

Collider Detector: Concentric Array of Specialized Particle Detectors
Discovered universe
Made of 3 families
Of quarks & leptons
DNA of Fundamental Particles: Vital Statistics

Masses of Fundamental Particles

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarks</td>
<td></td>
</tr>
<tr>
<td>u (up)</td>
<td>336 MeV/c²</td>
</tr>
<tr>
<td>d (down)</td>
<td>338 MeV/c²</td>
</tr>
<tr>
<td>s (strange)</td>
<td>540 MeV/c²</td>
</tr>
<tr>
<td>c (charmed)</td>
<td>1,500 MeV/c²</td>
</tr>
<tr>
<td>t (top)</td>
<td>174,000 MeV/c²</td>
</tr>
<tr>
<td>b (bottom)</td>
<td>4,500 MeV/c²</td>
</tr>
<tr>
<td>Leptons</td>
<td></td>
</tr>
<tr>
<td>e⁻ (electron)</td>
<td>0.511 MeV/c²</td>
</tr>
<tr>
<td>νₑ (electron neutrino)</td>
<td>< 7 eV/c²</td>
</tr>
<tr>
<td>μ⁻ (muon)</td>
<td>105.69 MeV/c²</td>
</tr>
<tr>
<td>νₘ (muon neutrino)</td>
<td>< 0.27 MeV/c²</td>
</tr>
<tr>
<td>τ⁻ (tau)</td>
<td>1,784 MeV/c²</td>
</tr>
<tr>
<td>νₜ (tau neutrino)</td>
<td>< 31 MeV/c²</td>
</tr>
</tbody>
</table>

Bosons That Mediate the Basic Interactions

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Boson</th>
<th>Spin</th>
<th>Mass</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>gluon</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Weak</td>
<td>W⁺/-</td>
<td>1</td>
<td>2 80.35 GeV/c²</td>
<td>±1 e</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>photon</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gravitational</td>
<td>graviton</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Some Quantum Numbers of Quarks

Properties of Quarks and Antiquarks

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Spin</th>
<th>Charge</th>
<th>Baryon Number</th>
<th>Strangeness</th>
<th>Charm</th>
<th>Topness</th>
<th>Bottomness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u (up)</td>
<td>1/2</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d (down)</td>
<td>1/2</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s (strange)</td>
<td>1/2</td>
<td>-</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c (charmed)</td>
<td>1/2</td>
<td>+</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t (top)</td>
<td>1/2</td>
<td>+</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b (bottom)</td>
<td>1/2</td>
<td>-</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>Antiquarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u (up)</td>
<td>1/2</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d (down)</td>
<td>1/2</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s (strange)</td>
<td>1/2</td>
<td>-</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c (charmed)</td>
<td>1/2</td>
<td>+</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t (top)</td>
<td>1/2</td>
<td>+</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b (bottom)</td>
<td>1/2</td>
<td>-</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Composite Particles are made of Quarks held by “glue”

Proton = (uud); Neutron = (udd), Pion⁺ = (u dbar), K⁺ = (sbar d)
Some Open Questions In Particle Physics

- How do particles get the masses they have?
 - Physicists believe particle masses are generated by interaction with a mysterious field that permeates the entire universe
 - Stronger the particle interacts with the field, the more massive it is
 - It could be a new fundamental field called Higgs field
 - Or it may be a composite object made of new particles (techniquarks) tightly bound together by a new force (technicolor!)

- Whatever the nature of this mass mechanism, odds are solid that it will be produced when beams of protons with energy of 7 TRILLION eV collide at the LHC accelerator
 - Could be seen as one or many new Higgs particles

- If the Universe is made of >4 dimensions, some of the extra dimensions could “pop” out in these violent collisions
- Little blackholes could also be produced in these high energy interactions… and the detector will catch them in action!!

Hunting for Higgs Particle With CMS Detector

Detector characteristics:
- Width: 23m
- Diameter: 35m
- Weight: 14500t
Setting the Trap for Higgs Particle

Accelerators Permit Investigations of Fabric of Spacetime

Is String theory the ultimate answer?

Dr. Brian Wecht will tell you about String theory next week.