$\lambda=\frac{h}{p} ; \Delta x \cdot \Delta p \geq \frac{h}{4 \pi} \quad ; \quad \Delta E . \Delta t \geq \frac{h}{4 \pi}$
Time Dep. S. Eq: $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x, t)}{d x^{2}}+U(x) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}$
Time Indep. S. Eq: $-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}+U(x) \psi(x)=E \psi(x)$
Particle in box of length $\mathrm{L}: \psi_{n}(0<x<L)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \& \mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}$
Planck's constant $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}=4.136 \times 10^{-15} \mathrm{eV} . \mathrm{s}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
Electron mass $=9.1 \times 10^{-31} \mathrm{Kg}=0.511 \mathrm{MeV} / \mathrm{c}^{2}$
Energy in Hydrogen atom $\mathrm{E}_{\mathrm{n}}=\frac{-k e^{2}}{2 a_{0}}\left(\frac{1}{n^{2}}\right)=\left(\frac{-13.6 \mathrm{eV}}{n^{2}}\right)$
$\sin \alpha \sin \beta=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta))$
$\int \sin ^{2} x d x=-\frac{1}{2} \cos x \sin x+\frac{1}{2} \mathrm{x}=\frac{1}{2} x-\frac{1}{4} \sin 2 x$

Please consult the proctor if you don't understand any part of the questions

Department of Shysics

 Uniwersity of Califarnia San Diega
Problem 1: Lazy "R" Us! [8 pts]

Consider a particle of mass m moving in a one-dimensional box with rigid walls (infinite potential) at $\mathrm{x}=-\mathrm{L} / 4$ and $\mathrm{x}=\mathrm{L} / 4$. (a) Draw this potential form (b) Find the normalization constant, the complete wavefunctions and probability densities for state $\mathrm{n}=1, \mathrm{n}=2 \& \mathrm{n}=3$. (c) Neatly sketch the wavefunctions and probability densities in each case. Indicate the locations of the walls.

Problem 2: Episode II: Attack Of The Clones [12 pts]

A free particle of mass m with wave number k_{1} is traveling in the right direction. Its energy $E=\frac{\hbar^{2} k_{1}^{2}}{2 m}=2 V_{0}$. At $x=0$, the potential step jumps from zero to $-\mathrm{V}_{0}$. and remains at this value for all positive x . (a) draw the potential (b) does the particle slow down or speed up in region $x>0$? (c) What is the wave number k_{2} of the particle in $\mathrm{x}>0$? (d) Calculate the reflection coefficient R at the potential step. (e) What is the transmission coefficient T ? (f) If one million such particles with wave number k_{1} are incident on the potential step, how many particles are expected to continue along the positive x direction ? (g) How does this answer compare with the classical prediction?

