Some Useful Numbers, Equations and Identities

$$
\begin{gathered}
\Delta \mathrm{x} \cdot \Delta \mathrm{p}_{\mathrm{x}} \geq \frac{\hbar}{2} \quad ; \quad \Delta \mathrm{E} \cdot \Delta \mathrm{t} \geq \frac{\hbar}{2} \\
\text { TDSE }:-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+\mathrm{U}(x) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t} \\
\text { TISE }:-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+\mathrm{U}(x) \psi(x)=E \psi(x) \\
\text { Operator }:[\hat{p}]=\frac{\hbar}{i} \frac{\partial}{\partial x}, \quad\left[\hat{p^{2}}\right]=-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}},[\hat{E}]=i \hbar \frac{\partial}{\partial t}
\end{gathered}
$$

$$
\text { Uncertainty in observable } \mathrm{Q}: \quad \Delta \mathrm{Q}=\sqrt{\left\langle\mathrm{Q}^{2}\right\rangle-\langle\mathrm{Q}\rangle^{2}}
$$

$$
\text { Expectation Value }<\mathrm{Q}>=\int \psi(\mathrm{x})^{*}[\mathrm{Q}] \psi(\mathrm{x}) \mathrm{dx}
$$

$$
\int_{0}^{+\infty} e^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}}, a>0
$$

$$
\int_{0}^{+\infty} x^{2} e^{-a x^{2}} d x=\frac{1}{4 a} \sqrt{\frac{\pi}{a}}, a>0
$$

$$
\int_{0}^{+\infty} x^{(2 n)} e^{-a x^{2}} d x=\frac{1.3 \cdot .(2 n-1)}{2^{(n+1)}} \sqrt{\frac{\pi}{a^{2 n+1}}}, a>0
$$

$$
\int_{0}^{+\infty} x^{(2 n+1)} e^{-a x^{2}} d x=\frac{n!}{2 a^{(n+1)}}, a>0
$$

For a Quantum oscillator under $U(x)=\frac{1}{2} m \omega^{2} x^{2}$ the ground state wavefunction is: $\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \times e^{-\frac{m \omega x^{2}}{2 \hbar}}$ and energy is $E=(1 / 2) \hbar \omega$

Department of Shysics Uniwersity of Califarnia San Diega

Quantum Universe (4E)
Praf. V. Sharma Quiz \# 3 (May 13, 2005)

Problem 1: Déjà Vu all over again! [12 pts]

(a) Calculate $\langle x\rangle,\left\langle x^{2}\right\rangle$ and Δx for a quantum oscillator of mass m and angular frequency ω in its ground state. (b) What is the average potential energy for this system. Calculate (c) the average momentum <p>, (d) the average kinetic energy<KE>, (e) $<p^{2}>$ and (f) the product $\Delta \mathrm{x} . \Delta \mathrm{p}$.

Problem 2: A Step in the Right Direction [8 pts]

A particle is incident on a potential step characterized by

$$
\begin{aligned}
& U(x)=0 \text { for } x<0 \\
& U(x)=U \text { for } x>0
\end{aligned}
$$

with a kinetic energy $\mathrm{E}<\mathrm{U}$. It is described by the wavefunction

$$
\begin{aligned}
& \psi(\mathrm{x})=\frac{1}{2}\left\{(1+\mathrm{i}) \mathrm{e}^{\mathrm{ikx}}+(1-\mathrm{i}) \mathrm{e}^{-\mathrm{ikx}}\right\} \text { for } \mathrm{x} \leq 0 \\
& \psi(\mathrm{x})=\mathrm{e}^{-\mathrm{kx}} \text { for } \mathrm{x} \geq 0
\end{aligned}
$$

(a) verify by direct calculation that the reflection coefficient \mathbf{R} is unity (b) How must k be related to E in order for $\psi(x)$ to solve Schrodinger equation in the region to the left of the step $(x \leq 0)$ and to the right of the step. Calculate the relation between energy E and the potential U.

