1. Problem 1

a)

b) For the full detail see last week's quiz. For these solutions I will use a shortcut. First we know $\Psi(x, y)=\psi_{1}(x) \psi_{2}(y)$. Also $\psi_{1}(x)$ is given on the formula sheet, $\psi_{1}(x)=$ $\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)$. To find $\psi_{2}(y)$ we just tweak this answer a bit. The length of the box in this direction is $L / 2$ not L. So first we replace L in the given solution with $L / 2$. Also our box now begins at $-L / 4$, not 0 . To compensate we subtract $-L / 4$ from y. Thus our answer is: $\psi_{2}(y)=\sqrt{\frac{2}{L / 2}} \sin \left(\frac{n \pi}{L / 2}(y+L / 4)\right)$. So the wavefunctions are:

$$
\begin{equation*}
\Psi(x, y)=\frac{2 \sqrt{2}}{L} \sin \left(\frac{n_{x} \pi}{L} x\right) \sin \left(\frac{2 n_{y} \pi}{L}(y+L / 4)\right) \tag{1.1}
\end{equation*}
$$

We can see that the normalization constant is $\frac{2 \sqrt{2}}{L}$. The corresponding probability densities are:

$$
\begin{equation*}
P(x, y)=|\Psi(x, y)|^{2}=\frac{8}{L^{2}} \sin ^{2}\left(\frac{n_{x} \pi}{L} x\right) \sin ^{2}\left(\frac{2 n_{y} \pi}{L}(y+L / 4)\right) \tag{1.2}
\end{equation*}
$$

Now we must determine which are the three lowest energy states, what on the quiz was called " $n=1, n=2$ and $n=3$." From part c) below we see that the three lowest energy states are $\left(n_{x}, n_{y}\right)=(1,1),(2,1)$ and $(3,1)$. Plugging these values into (1.1) and (1.2) give the wavefunctions and probability densites for these states.
c) We have that $E_{n_{x}, n_{y}}=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}\right)$, where k is what multiplies x in the wavefunction. Therefore:

$$
\begin{align*}
E_{n_{x}, n_{y}} & =\frac{\hbar^{2}}{2 m}\left(\left(\frac{n_{x} \pi}{L}\right)^{2}+\left(\frac{2 n_{y} \pi}{L}\right)^{2}\right) \tag{1.3}\\
& =\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}\left(n_{x}^{2}+4 n_{y}^{2}\right)
\end{align*}
$$

d) For $n=2$, that is $\left(n_{x}, n_{y}\right)=(2,1), \Psi(x, y)=\frac{2 \sqrt{2}}{L} \sin \left(\frac{2 \pi}{L} x\right) \sin \left(\frac{2 \pi}{L}\left(y+\frac{L}{4}\right)\right)$. Thus:

$$
\begin{aligned}
\langle y\rangle & =\int_{0}^{L} d x \int_{-L / 4}^{L / 4} d y y|\Psi(x, y)|^{2} \\
& =\int d y y \frac{4}{L} \sin ^{2}\left(\frac{2 \pi}{L}(y+L / 4)\right)
\end{aligned}
$$

The x part of the integral just cancelled the x part of the normalization constant

$$
\begin{align*}
\langle y\rangle & =4 / L \int_{0}^{L / 2}\left(y^{\prime}-L / 4\right) \sin ^{2}\left(\frac{2 \pi}{L} y^{\prime}\right) \\
& =4 / L\left(\int_{0}^{\pi}\left(\frac{L}{2 \pi}\right)^{2} y^{\prime \prime} \sin ^{2} y^{\prime \prime} d y^{\prime \prime}-\frac{L^{2}}{8 \pi} \int_{0}^{\pi} \sin ^{2} y^{\prime \prime} d y^{\prime \prime}\right) \\
& =\frac{4}{L}\left(\left.\frac{L^{2}}{4 \pi^{2}}\left(\left(y^{\prime \prime}\right)^{2} / 4-\cos \left(2 y^{\prime \prime}\right) / 8-y^{\prime \prime} \sin \left(2 y^{\prime \prime}\right)\right)\right|_{0} ^{\pi}-\left.\frac{L^{2}}{8 \pi}\left(y^{\prime \prime} / 2-\sin \left(2 y^{\prime \prime}\right) / 4\right)\right|_{0} ^{\pi}\right) \\
& =\frac{4}{L}\left(\frac{L^{2}}{4 \pi^{2}}\left(\frac{\pi^{2}}{4}\right)-\frac{L^{2}}{8 \pi}\left(\frac{\pi}{2}\right)\right) \\
& =0 \tag{1.4}
\end{align*}
$$

This is the answer we knew we had to get. Above $y^{\prime}=(y+L / 4)$ and $y^{\prime \prime}=\frac{2 \pi}{L} y^{\prime}$.

2. Problem 2

a) In the $1 s$ state $\ell=0$, thus the total angular momentum is just from the spin. $S=\sqrt{s(s+1)} \hbar=\frac{\sqrt{3}}{2} \hbar$.
b) $S=I \omega$, so:

$$
\begin{equation*}
\omega=S / I=\frac{\frac{\sqrt{3}}{2} \hbar}{\frac{2}{5} m R^{2}}=\frac{5 \sqrt{3}}{4} \frac{\hbar}{m R^{2}} \tag{2.1}
\end{equation*}
$$

c)Since $v=\omega R$, we have $v=\frac{5 \sqrt{3}}{4} \frac{\hbar}{m R}=8.35 \times 10^{10} \frac{m}{s}$. That is $v=278 c$, where c is the speed of light.
d) Very much bogus. if something were to sit on the outside of the electron it would be traveling at many times the speed of light.

