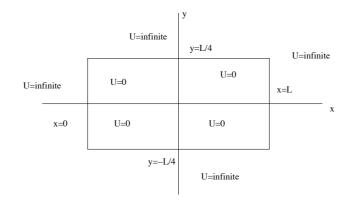
1. Problem 1

a)



b) For the full detail see last week's quiz. For these solutions I will use a shortcut. First we know $\Psi(x, y) = \psi_1(x)\psi_2(y)$. Also $\psi_1(x)$ is given on the formula sheet, $\psi_1(x) = \sqrt{\frac{2}{L}}\sin\left(\frac{n\pi}{L}x\right)$. To find $\psi_2(y)$ we just tweak this answer a bit. The length of the box in this direction is L/2 not L. So first we replace L in the given solution with L/2. Also our box now begins at -L/4, not 0. To compensate we subtract -L/4 from y. Thus our answer is: $\psi_2(y) = \sqrt{\frac{2}{L/2}}\sin\left(\frac{n\pi}{L/2}(y+L/4)\right)$. So the wavefunctions are:

$$\Psi(x,y) = \frac{2\sqrt{2}}{L} \sin\left(\frac{n_x \pi}{L}x\right) \sin\left(\frac{2n_y \pi}{L}(y+L/4)\right)$$
(1.1)

We can see that the normalization constant is $\frac{2\sqrt{2}}{L}$. The corresponding probability densities are:

$$P(x,y) = |\Psi(x,y)|^2 = \frac{8}{L^2} \sin^2\left(\frac{n_x\pi}{L}x\right) \sin^2\left(\frac{2n_y\pi}{L}(y+L/4)\right)$$
(1.2)

Now we must determine which are the three lowest energy states, what on the quiz was called "n = 1, n = 2 and n = 3." From part c) below we see that the three lowest energy states are $(n_x, n_y) = (1, 1)$, (2, 1) and (3, 1). Plugging these values into (1.1) and (1.2) give the wavefunctions and probability densites for these states.

c) We have that $E_{n_x,n_y} = \frac{\hbar^2}{2m} (k_x^2 + k_y^2)$, where k is what multiplies x in the wavefunction. Therefore:

$$E_{n_x,n_y} = \frac{\hbar^2}{2m} \left(\left(\frac{n_x \pi}{L} \right)^2 + \left(\frac{2n_y \pi}{L} \right)^2 \right)$$

= $\frac{\hbar^2 \pi^2}{2mL^2} (n_x^2 + 4n_y^2)$ (1.3)

d) For n = 2, that is $(n_x, n_y) = (2, 1), \Psi(x, y) = \frac{2\sqrt{2}}{L} \sin\left(\frac{2\pi}{L}x\right) \sin\left(\frac{2\pi}{L}(y + \frac{L}{4})\right)$. Thus:

$$\begin{aligned} \langle y \rangle &= \int_0^L dx \int_{-L/4}^{L/4} dyy |\Psi(x,y)|^2 \\ &= \int dyy \frac{4}{L} \sin^2 \left(\frac{2\pi}{L} (y+L/4) \right) \end{aligned}$$

The x part of the integral just cancelled

the x part of the normalization constant

$$\begin{aligned} \langle y \rangle &= 4/L \int_0^{L/2} (y' - L/4) \sin^2 \left(\frac{2\pi}{L} y'\right) \\ &= 4/L \left(\int_0^\pi \left(\frac{L}{2\pi}\right)^2 y'' \sin^2 y'' dy'' - \frac{L^2}{8\pi} \int_0^\pi \sin^2 y'' dy'' \right) \\ &= \frac{4}{L} \left(\frac{L^2}{4\pi^2} \left((y'')^2/4 - \cos(2y'')/8 - y'' \sin(2y'') \right) |_0^\pi - \frac{L^2}{8\pi} (y''/2 - \sin(2y'')/4) |_0^\pi \right) \\ &= \frac{4}{L} \left(\frac{L^2}{4\pi^2} \left(\frac{\pi^2}{4}\right) - \frac{L^2}{8\pi} \left(\frac{\pi}{2}\right) \right) \\ &= 0 \end{aligned}$$
(1.4)

This is the answer we knew we had to get. Above y' = (y + L/4) and $y'' = \frac{2\pi}{L}y'$.

2. Problem 2

a) In the 1s state $\ell = 0$, thus the total angular momentum is just from the spin. $S = \sqrt{s(s+1)}\hbar = \frac{\sqrt{3}}{2}\hbar$. b) $S = I\omega$, so:

$$\omega = S/I = \frac{\frac{\sqrt{3}}{2}\hbar}{\frac{2}{5}mR^2} = \frac{5\sqrt{3}}{4}\frac{\hbar}{mR^2}$$
(2.1)

c) Since $v = \omega R$, we have $v = \frac{5\sqrt{3}}{4} \frac{\hbar}{mR} = 8.35 \times 10^{10} \frac{m}{s}$. That is v = 278c, where c is the speed of light.

d) Very much bogus. if something were to sit on the outside of the electron it would be traveling at many times the speed of light.