1. Problem 1

a)

b) Outside the well $\psi=0$, and inside: $\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}=E \psi$

Our boundary conditions are that $\psi(-L / 4)=\psi(L / 4)=0 . \psi=A \cos (k x)+B \sin (k x)$. Using our B.C.'s we know that $k_{1} L / 4=\frac{2 n-1}{2} \pi$ for the \cos term. For the sin term we have: $k_{2} L / 4=n \pi$. So $k_{1}=\frac{2(2 n-1) \pi}{L}$ and $k_{2}=\frac{4 n \pi}{L}$. These are not compatible, so our wavefunctions are either $A \cos \left(k_{1} x\right)$ or $B \sin \left(k_{2} x\right)$. These give energies of $E_{n}^{(2)}=$ $\frac{\hbar^{2} k_{2}^{2}}{2 m}=8 \frac{\hbar^{2} n^{2} \pi^{2}}{m L^{2}}$ and $E_{n}^{(1)}=2 \frac{(2 n-1)^{2} \hbar^{2} \pi^{2}}{m L^{2}}$. The first few values of these are (in terms of $\left.E_{0}=\hbar^{2} \pi^{2} / m L^{2}\right):$

$$
\begin{align*}
& E_{1}^{(2)}=8 E_{0} \\
& E_{2}^{(2)}=32 E_{0} \\
& E_{3}^{(2)}=72 E_{0} \tag{1.1}\\
& E_{1}^{(1)}=2 E_{0} \\
& E_{2}^{(1)}=18 E_{0} \\
& E_{3}^{(1)}=50 E_{0}
\end{align*}
$$

For the normalization:

$$
\begin{align*}
1 & =\int|\psi|^{2} d x \\
& =A^{2} \int_{-L / 4}^{L / 4} \cos ^{2}\left(\frac{2(2 n-1) \pi}{L} x\right) \\
& =A^{2} \int\left(1-\sin ^{2}\left(\frac{2(2 n-1) \pi}{L} x\right)\right. \tag{1.2}\\
& =A^{2}\left[x-\left.\left(\frac{x}{2}-\frac{1}{4 k} \sin (2 k x)\right]\right|_{-L / 4} ^{L / 4}\right. \\
& =A^{2}\left(\frac{L}{4}\right) \\
A & =\frac{2}{\sqrt{L}}
\end{align*}
$$

So the normalization constant is $\frac{2}{\sqrt{L}}$. We will find the same thing for B. The first three wave functions with associated probability densities are:

$$
\begin{array}{ll}
\psi_{1}=\frac{2}{\sqrt{L}} \cos \left(\frac{2 \pi x}{L}\right) & \left|\psi_{1}\right|^{2}=\frac{4}{L} \cos ^{2}\left(\frac{2 \pi x}{L}\right) \\
\psi_{2}=\frac{2}{\sqrt{L}} \sin \left(\frac{4 \pi x}{L}\right) & \left|\psi_{2}\right|^{2}=\frac{4}{L} \sin ^{2}\left(\frac{4 \pi x}{L}\right) \tag{1.3}\\
\psi_{3}=\frac{2}{\sqrt{L}} \cos \left(\frac{6 \pi x}{L}\right) & \left|\psi_{3}\right|^{2}=\frac{4}{L} \cos ^{2}\left(\frac{6 \pi x}{L}\right)
\end{array}
$$

c) ψ_{1}

$\left|\psi_{1}\right|^{2}$

ψ_{2}

$\left|\psi_{2}\right|^{2}$

$\left|\psi_{3}\right|^{2}$

2. Problem 2

a)

b) Speeds up. The total energy is the same, but the potential energy decreases, so KE must increase.
c) From the S. Equation:

$$
\begin{align*}
\frac{\hbar^{2} k_{2}^{2}}{2 m}-V_{0} & =2 V_{0} \\
k_{2}^{2} & =\frac{6 m V_{0}}{\hbar^{2}} \tag{2.1}\\
k_{2} & =\sqrt{\frac{6 m V_{0}}{\hbar^{2}}}=\sqrt{\frac{3 k_{1}^{2}}{2}}=\sqrt{\frac{3}{2}} k_{1}
\end{align*}
$$

d) For ψ we have:

$$
\begin{align*}
& \psi_{x<0}=A e^{i k_{1} x}+B e^{-i k_{1} x} \\
& \psi_{x>0}=C e^{i k_{2} x} \tag{2.2}
\end{align*}
$$

Continuity of ψ and ψ^{\prime} gives:

$$
\begin{align*}
A+B & =C \\
i k_{1}(A-B) & =i k_{2} C \\
A+B=C & =\frac{k_{1}}{k_{2}}(A-B) \\
1+\frac{B}{A} & =\frac{k_{1}}{k_{2}}\left(1-\frac{B}{A}\right) \\
\frac{B}{A} & =\frac{k_{1}-k_{2}}{k_{1}+k_{2}} \tag{2.3}\\
R=\frac{|B|^{2}}{|A|^{2}} & =\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right)^{2} \\
& =\left(\frac{1-\sqrt{3 / 2}}{1+\sqrt{3 / 2}}\right)^{2}=0.0102
\end{align*}
$$

e) $T=1-R=0.9898$
f) $10^{6} \times T=989,800$
g) Classically all 10^{6} would continue.

