1. Problem 1

a) $\langle x\rangle=0$ by symmetry. You could also do the integral $\int_{-\infty}^{\infty} x e^{-a x^{2}}$, but x is odd and $e^{-a x^{2}}$ is even, so when you integrate over a symmetric interval, you get zero.

$$
\begin{align*}
& \left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} \sqrt{\frac{a}{\pi}} e^{-a x^{2}} x^{2} d x \\
& \text { Where } a=\frac{m \omega}{\hbar} \\
& \left\langle x^{2}\right\rangle=\sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} \frac{-\partial}{\partial a} e^{-a x^{2}} d x \\
& =\sqrt{\frac{a}{\pi}} \frac{-\partial}{\partial a} \int_{-\infty}^{\infty} e^{-a x^{2}} d x \tag{1.1}\\
& =\sqrt{\frac{a}{\pi}} \frac{-\partial}{\partial a} \sqrt{\frac{\pi}{a}} \\
& =\frac{1}{2 a}=\frac{\hbar}{2 m \omega} \\
& \Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} \\
& =\sqrt{\frac{\hbar}{2 m \omega}} \tag{1.2}
\end{align*}
$$

b) $P E=\frac{1}{2} m \omega^{2} x^{2}$, so:

$$
\begin{align*}
\langle P E\rangle & =\left\langle\frac{1}{2} m \omega^{2} x^{2}\right\rangle \\
& =\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle \tag{1.3}\\
& =\frac{1}{4} \hbar \omega
\end{align*}
$$

c) $\langle p\rangle=0$ by symmetry. You could also do the integral, but it would vanish for the same reason the integral in part a) did.
d) Since $E=K E+P E=\frac{1}{2} \hbar \omega$ for the ground state, $\frac{1}{2} \hbar \omega=\langle K E\rangle+\langle P E\rangle=$ $\langle K E\rangle+\frac{1}{4} \hbar \omega$. So we have that $\langle K E\rangle=\frac{1}{4} \hbar \omega$
e) Notice $K E=\frac{p^{2}}{2 m}$, therefore $\langle K E\rangle=\frac{1}{4} \hbar \omega=\frac{\left\langle p^{2}\right\rangle}{2 m}$. This gives $\left\langle p^{2}\right\rangle=\frac{1}{2} m \omega \hbar$. You could also do the integral $\int_{-\infty}^{\infty}\left(-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}\right) e^{-a x^{2}}$, but you will get the same answer and it will take a lot longer.
f)

$$
\begin{align*}
\Delta p & =\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}} \\
& =\sqrt{\frac{m \hbar \omega}{2}} \\
\Delta p \Delta x & =\sqrt{\frac{m \hbar \omega}{2}} \sqrt{\frac{\hbar}{2 m \omega}} \tag{1.4}\\
& =\frac{\hbar}{2}
\end{align*}
$$

2. Problem 2

a)

$$
\begin{aligned}
R & =\frac{\left|\frac{1}{2}(1-i)\right|^{2}}{\left|\frac{1}{2}(1+i)\right|^{2}} \\
& =\frac{(1-i)(1+i)}{(1+i)(1-i)} \\
& =1
\end{aligned}
$$

b) In the region where $x<0$, we can plug into the Schrodinger equation and we get: $E \psi=\frac{\hbar^{2} k^{2}}{2 m} \psi$. So we find that $k^{2}=\frac{2 m E}{\hbar^{2}}$. E will be the same in the region where $x>0$, so if the k is the same in both regions, the same expression for k^{2} must hold when $x>0$.

We can also plug the $x>0$ part into the Schodinger Equation, where we will find that $k^{2}=\frac{2 m(U-E)}{\hbar^{2}}$. Comparing this with the formula for k^{2} above, we find that $E=\frac{1}{2} U$.

