
1. Problem 1

a) A probe which can localize an electron within 0.1a0, must be at least this small. We

will take this to be ∆x. From the uncertainty principle the momentum of this probe must

have uncertainty of ∆p ≈ h̄/∆x (h̄/2∆x is also acceptable). Thus ∆p = 10h̄/a0. This

is approximately how much momentum that is transferred to the electron. The angular

momentum is quantized: mvr = nh̄. So the momentum of an electron in the hydrogen

will have a momentum p = nh̄/rn = h̄/na0. So we have:
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If you used ∆p = h̄/2∆x, you would find: ∆KE = 76.3eV (5 + 2
n ).

b) This is much larger than the ionization energy, so if we did localize the electron to

a region this small, it would be ripped from the atom.

c) The electron can not be localized to a small band, so the solar system type structure

of an atom is not a reasonable model.

2. Problem 2

a) For a spring the potential energy is 1
2kx2, in terms of ω:
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The minimum classical energy Ec is zero. This is because both p and x can be exactly

zero classically.

b) From the uncertainty principle we know ∆p = h̄/2∆x. Taking p = ∆p and x = ∆x,

(2.1) becomes:
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differentiating w.r.t ∆x and setting to 0 to minimize, we find:
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plugging back in:
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c) This is larger, a quantum oscillator cannot have zero energy.

d) Planck’s oscillator had energy En = nhf = nh̄ω for n = 1, 2...,∞. The mimimum

energy of the Planck oscillator is twice Eq. If you had used ∆x∆p = h̄, you would have

found that Eq = E1.
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