Phys UE Week 3 WW

$$
S: 13,19,22,26,30,31,38,42,48,49,50,52
$$

13 It's ambigums, lat say the distance between the horizontal planes is $D=0.3 \mathrm{~nm}$.

$$
\begin{aligned}
& \prod_{0.3 \mathrm{~mm}}^{0} \text { Then }_{n \lambda}=D \sin \phi \\
& \Rightarrow \lambda=.3 \sin \left(42^{\circ}\right) \\
&=.2 \mathrm{~nm} \\
& \text { So } \begin{aligned}
p=\frac{h}{\lambda}=\frac{h c}{\lambda c} & =\frac{1240 \cdot \mathrm{~V} \cdot \mathrm{~nm}}{(2 \mathrm{~nm}) \cdot c} \\
& =6.2 \mathrm{keV} / \mathrm{c}
\end{aligned}
\end{aligned}
$$

This is small for neutrons, 10 use son-relativistic

$$
K E=\frac{p^{2}}{2 m} \Rightarrow \frac{(p c)^{2}}{2 m c^{2}}=\frac{(6.2 \mathrm{heV})^{2}}{2(939 \mathrm{MeV})}=2 \times 10^{-2} \mathrm{eV}
$$

1. 5-17

(a)

$$
\begin{align*}
y(x, t) & =y_{1}(x, t)+y_{2}(x, t) \\
& =2(A) \cos \left(\frac{1}{2}\left(k_{2}-k_{1}\right) x-\frac{1}{2}\left(\omega_{2}-\omega_{1}\right) t\right) \cos \left(\frac{k_{1}+k_{2}}{2} x-\frac{\omega_{1}+\omega_{2}}{2} t\right) \tag{1.1}\\
& =(0.004 m) \cos (0.2 x / m-10 t / s) \cos (7.8 x / m-390 t / s)
\end{align*}
$$

(b)

$$
\begin{align*}
v & =\frac{\bar{\omega}}{\bar{k}}=\frac{\omega_{1}+\omega_{2}}{k_{1}+k_{2}} \tag{1.2}\\
& =50 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{align*}
$$

(c)

$$
\begin{align*}
v_{g} & =\frac{\Delta \omega}{\Delta k} \\
& =\frac{\omega_{1}-\omega_{2}}{k_{1}-k_{2}} \tag{1.3}\\
& =50 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{align*}
$$

(d) Successive zeros requires $0.2 \Delta x=\pi m$, thus $\Delta x=\frac{\pi}{0.2} m=5 \pi m$, and Deltak $=$ $0.4 m^{-1}$
2. $5-18$
(a) We start with $v=f \lambda$ and differentiate:

$$
\begin{gather*}
\frac{d v}{d \lambda}=f+\lambda \frac{d f}{d \lambda} \\
\lambda \frac{d v}{d \lambda}=f \lambda+\lambda^{2} \frac{d f}{d \lambda} \\
=v+\frac{\lambda^{2}}{2 \pi} \frac{d \omega}{d \lambda} \tag{2.1}\\
\frac{-\lambda^{2}}{2 \pi} \frac{d \omega}{d \lambda}=v-\lambda \frac{d v}{d \lambda} \\
\text { Using } k=2 \pi / \lambda \\
\frac{d \omega}{d k}=v_{g}=v-\lambda \frac{d v}{d \lambda}
\end{gather*}
$$

(b) v decreases as λ decreases, so $\frac{d v}{d \lambda}$ is positive.
$19]$
a] The waved travels out at speed c, for $.25 \mu s$
\therefore Length of packet $=(.25 \mu \mathrm{~s}) \times c=7 \mathrm{sm}$
b. $f=\frac{c}{\lambda}=1.5 \times 10^{10} \mathrm{~Hz}$ This is the peak wardeyth in the packet.
c) $\Delta \omega \Delta t \approx 1$, ad since $\Delta t=25 \mu^{s}$

$$
\Rightarrow \Delta F \approx \frac{1}{2 \pi(.25, s)}=637 \mathrm{kHz}
$$

$22 \int \lambda=\frac{h}{P}=\frac{h}{\sqrt{2 m E}}=\frac{h c}{\sqrt{2 m c_{c}^{2} E}}=\frac{1210 \mathrm{eV} \cdot n m}{\sqrt{2(s 11 \mathrm{kc} \cdot \mathrm{V})(\mathrm{scc})}}$

$$
=0.549 \mathrm{~mm}
$$

So $d \sin \theta=\frac{\lambda}{2} \Rightarrow Q=3.15 \mathrm{~nm}$
b

$$
\begin{aligned}
& \Rightarrow \tan \theta=\frac{\frac{1}{2} \mathrm{~cm}}{L} \text { for } \theta=5^{\circ} \\
& \Rightarrow L=5.7 \mathrm{~cm}
\end{aligned}
$$

26
a) Doit really know when to stop counting -how small docs it have to get?

$$
\begin{aligned}
& f=\frac{1}{T} \Rightarrow T=\frac{\Delta t}{N} \text {, so } f=\frac{N}{\Delta t} . \\
& \therefore \Delta f=\frac{\Delta N}{\Delta t} \hat{\sim} \frac{1}{\Delta t}
\end{aligned}
$$

b) $\lambda=\frac{\Delta x}{N} \Rightarrow k=\frac{2 \pi N}{\Delta x} \Rightarrow \Delta k=\frac{2 \pi \Delta N}{\Delta x}=\frac{2 \pi}{\Delta x}$

301 $\Delta X \Delta p \approx \frac{\hbar}{2} \Rightarrow \lambda \Delta p \approx \frac{\hbar}{2} \Rightarrow \Delta p \approx\left(\frac{n}{\lambda}\right) \frac{1}{4 \pi}$

$$
\Rightarrow \Delta_{p} \hat{\sim} \frac{p}{4 \pi}
$$

31) Set $\Delta p \hat{\sim} P=900 \frac{\mathrm{kgm}}{\mathrm{s}}$

So $\Delta x=\frac{\hbar}{2(\Delta p)}=\frac{50}{2(900)}=2.8 \mathrm{~cm}$
You could "see" The uncertainty - it would be fuzzy!

38 Set $\Delta x=1 \mathrm{fm}$

$$
p=\Delta_{p} \approx \frac{t}{2\left(1 \mathrm{f}_{\mathrm{m}}\right)}=98.5 \frac{\mathrm{HeV}}{\mathrm{c}}
$$

for neutron, not relativistic $\Rightarrow E=\frac{p^{2}}{2 m}=5 \mathrm{McV}$
Election is relativistic: $E=\sqrt{p^{2} c^{2}+m^{2} c^{4}}$

So $K E=\sqrt{p^{2} c^{2}+m^{2} c^{4}}-m c^{2}=98.0 \mathrm{HeV}$
$42 \int \lambda=\frac{2 L}{n}$, so $p=\frac{\hbar_{n}}{\lambda}=\frac{h_{n}}{2 L}$
Now, $E=\frac{p^{2}}{2 m}=\frac{h^{2} n^{2}}{8_{m} L^{2}}=n^{2}\left(\frac{h^{2}}{8_{m} L^{2}}\right) \equiv n^{2} E_{1}$
b) $E_{1}=37.6 \mathrm{eV}$, so $E_{n}=n^{2}(37.6 \mathrm{eV})$
c) $f=3(37.6 \mathrm{eV}) / \mathrm{h} \Rightarrow \lambda=\frac{h_{c}}{3(37.6 \mathrm{eV})}=11 \mathrm{am}$
d) $\lambda=\mathrm{hc} / \mathrm{s}(37.6 \mathrm{eV})=6.6 \mathrm{~nm}$
es $\lambda=h_{c} / 24(37.6 \mathrm{eV})=1.4 \mathrm{~nm}$

3. 5-39

(a) We will need: $E=h f=\hbar \omega$ and $p=\frac{h}{\lambda}=\hbar k$.

$$
\begin{align*}
E^{2} & =p^{2} c^{2}+m^{2} c^{4} \\
\hbar^{2} \omega^{2} & =\hbar^{2} k^{2} c^{2}+m^{2} c^{4} \\
v & =\frac{\omega}{k}=\frac{\hbar \omega}{\hbar k} \tag{3.1}\\
& =\frac{\sqrt{\hbar^{2} k^{2} c^{2}+m^{4} c^{2}}}{\hbar k} \\
& =c \sqrt{1+\frac{m^{2} c^{2}}{\hbar^{2} k^{2}}}>c
\end{align*}
$$

(b)

$$
\begin{align*}
v_{g} & =\frac{d \omega}{d k} \\
& =\frac{d}{d k} \sqrt{k^{2} c^{2}+m^{2} c^{4} / \hbar^{2}} \tag{3.2}\\
& =\frac{c^{2} k}{\sqrt{k^{2} c^{2}+m^{2} c^{4} / \hbar^{2}}}=\frac{c^{2} k}{\omega}=\frac{c^{2} p}{E}=u
\end{align*}
$$

4. 5-47

(a) The particles are moving at $0.01 c$, so we can ignore relativity.

$$
\begin{equation*}
\lambda=\frac{h}{p}=\frac{h}{m v}=2.43 \times 10^{-10} \tag{4.1}
\end{equation*}
$$

(b) Since the photons have equal energy, they also have equal momentum and wavelength. The incoming energy of the electron and positron are $E=m c^{2}+\frac{1}{2} m v^{2}$, and since v is much smaller than c, we can ignore the second term. Thus the incoming energy of the electron and positron are both $m c^{2}=0.511 \mathrm{MeV}$. This is conserved, so the photons must also both have $E=0.511 \mathrm{MeV}$.
(c) $p=E / c=0.511 \mathrm{MeV} / \mathrm{c}$
(d) $\lambda=\frac{h}{p}=2.43 \times 10^{-12} \mathrm{~m}$

48 a a $m_{n^{*}}+m_{1}-m_{p}=141.3 \mathrm{MeV} / \mathrm{c}^{2}$

$$
\Rightarrow \Delta E=141.3 \mathrm{MeV}
$$

b) $\Delta E \Delta t=\frac{t}{2} \Rightarrow \Delta t=2.3 \times 10^{-24} \mathrm{~s}$
$c) c \Delta t=7 \times 10^{-16} \mathrm{~m}$, about 1 fm
4q] $h f=\gamma m c^{2} \Rightarrow \gamma=\frac{h f}{m c^{2}} \Rightarrow \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{h f}{m c^{2}}$
So $1-v^{2} / c^{2}=\left(\frac{m c^{2}}{h f}\right)^{2} \Rightarrow \frac{v^{2}}{c^{2}}=1-\left(\frac{m c^{2}}{h t}\right)^{2}$

$$
\Rightarrow \frac{v}{c}=\left(1-\left(\frac{m r^{2}}{h f}\right)^{2}\right)^{1 / 2} \approx 1-\frac{1}{2}\left(\frac{m c^{2}}{h f}\right)^{2}
$$

Sousing $v>.99 c, \quad v / c \geq 0.99$

$$
\Rightarrow 1-\frac{1}{2}\left(\frac{m c^{2}}{h f}\right)^{2} \geq 0.99 \Rightarrow 0.01 \geq \frac{1}{2}\left(\frac{m c^{2}}{h f}\right)^{2}
$$

So use $\lambda=30 \mathrm{~m}$ to get

$$
1.08 \times 10^{-88} \geq m^{2} \Rightarrow m<10^{-44}
$$

SOD $\Delta v_{x}=\frac{t_{1}}{2 m \Delta x}$. And $y_{0}=\frac{1}{2 g} t^{2} \Rightarrow t=\left(\frac{2 y_{0}}{g}\right)^{1 / 2}$

$$
\therefore \Delta \bar{X}=\Delta v_{x}+=\left(\frac{2 y_{0}}{g}\right)^{1 / 2}\left(\frac{\hbar}{2 m \Delta x}\right)
$$

b) Now say $\Delta y \Delta p_{y}=\frac{\hbar}{2} \Rightarrow \Delta v_{y} \approx \frac{\hbar}{2 m \Delta y}$

So now $\quad y_{0}=\frac{1}{2} g t^{2}+\Delta v_{y} t$

$$
\Rightarrow t=\frac{-\Delta v_{y} \pm \sqrt{\left(\Delta v_{y}\right)^{2}+2 g y_{0}}}{g}
$$

Take The + root bile $\Delta v_{y}=0$ shall give $\left(\frac{2 y_{0}}{9}\right)^{1 / 2}$

$$
\therefore \Delta \bar{X}=\left(\frac{\hbar}{2 m \Delta x}\right)\left[\frac{-\Delta v_{y}+\sqrt{\left(\Delta v_{y}\right)^{2}+2 g y_{0}}}{g}\right]
$$

where $\Delta v_{y}=\frac{\hbar}{2 m \Delta y}$.
$S 2$
a) $P_{r}=\frac{E_{r}}{c}=\frac{\mid-V}{c}$

So $\frac{p^{2}}{2 m}=\frac{(1 e V)^{2}}{2 m c^{2}}$. Use $m_{F_{e}}=S 6 \cdot u$.

$$
=S 6\left(931.5 \frac{\mu \mathrm{LV}}{c^{2}}\right)
$$

$$
\Rightarrow E=\frac{p^{2}}{2 m}=9.6 \times 10^{-12}
$$

The line width is $h \Delta f \approx 10^{-8}$, so this is 10^{-3} tines that.
b) Now use $p=1 \mathrm{MeV}$ to get $E=9.6 \mathrm{eV}$

This is $10^{8} \times$ the live with.

