Properties of EM Waves: Maxwell’s Equations

Energy Flow in EM Waves

Poynting Vector \(\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) \)

Power incident on an area \(A \)

\[= \mathbf{S} \cdot \mathbf{A} = \frac{1}{\mu_0} \left(A E_0 B_0 \sin^2 (kx - \omega t) \right) \]

Intensity of Radiation \(I = \frac{1}{2\mu_0 c} \frac{E_0^2}{\mu_0} \)

Larger the amplitude of Oscillation
More intense is the radiation
Nature of Radiation: An Expt with BBQ Grill

Question: Distribution of Intensity of EM radiation Vs T & λ

- Radiator (BBQ grill) at some temp T
- Emits variety of wavelengths
 - Some with more intensity than others
- EM waves of diff. λ bend differently within prism
- Eventually recorded by a detector (eye)
- Map out emitted Power / area Vs λ

Notice shape of each curve and learn from it.
The Beginning of The End! How BBQ Broke Physics

Classical Calculation

of standing waves between Wavelengths λ and $\lambda + d\lambda$ are

$$N(\lambda)d\lambda = \frac{8\pi V}{\lambda^4} \cdot d\lambda; \ V = \text{Volume of box} = L^3$$

Each standing wave contributes energy $E = kT$ to radiation in Box

Energy density $u(\lambda) = \left[\frac{\text{# of standing waves}}{\text{volume}}\right] \times \text{Energy/Standing Wave}$

$$= \frac{8\pi V}{\lambda^4} \times \frac{1}{V} \times kT = \frac{8\pi}{\lambda^4} \ kT$$

Radiancy $R(\lambda) = \frac{c}{4} u(\lambda) = \frac{c}{4} \frac{8\pi}{\lambda^4} \ kT = \frac{2\pi c}{\lambda^4} \ kT$

Radiancy is Radiation intensity per unit λ interval: Let's plot it

Prediction: as $\lambda \rightarrow 0$ (high frequency f), $R(\lambda) \rightarrow \text{Infinity!}$

Oops!
Ultra Violet (Frequency) Catastrophe

Radiancy $R(\lambda)$

- Planck's law
- Rayleigh-Jeans law (Classical theory)

oops!
That was a Disaster!

(#1)
Disaster # 2 : Photo-Electric Effect

Light of intensity I, wavelength \(\lambda \) and frequency \(f \) incident on a photo-cathode

Can change I, f, \(\lambda \)

Measure characteristics of current in the circuit as a fn of I, f, \(\lambda \)
Photo Electric Effect: Measurable Properties

• Rate of electron emission from cathode
 – From current \(i \) seen in ammeter in the circuit. More photoelectrons \(\rightarrow \) more current registered in ammeter

• Maximum kinetic energy of emitted electron
 – By applying retarding potential on electron moving left to right towards Collector plate

 \[
 K_{\text{MAX}} = eV_0 \quad (V_0 = \text{Stopping voltage})
 \]

 • Stopping potential \(\rightarrow \) no current flows

• Photoelectric Effect on different types of photo-cathode metal surface

• Time **between** shining light and first sign of photo-current in the circuit
Observations: PhotoCurrent Vs Intensity of Incident Light

The graph shows the relationship between the photo current (i) in microamperes (μA) and the voltage (V) across the device. The intensity of the incident light is represented by I_1 for dim light and I_2 for bright light, with $I_2 > I_1$. The voltage is labeled as $-V_0$. The graph indicates that the current increases as the intensity of the light increases.
Observations: Photocurrent Vs frequency of incident light

Shining light with constant intensity but different frequencies
Try different photocathode materials…..see what happens
Conclusions from the Experimental Observations

• Max Kinetic energy K_{MAX} independent of Intensity I for light of same frequency

• No photoelectric effect occurs if light frequency f is below a threshold no matter how high the intensity of light

• For a particular metal, light with $f > f_t$ causes photoelectric effect IRRESPECTIVE of light intensity.
 − f_t is characteristic of that metal

• Photoelectric effect is instantaneous !...not time delay

Can one Explain all this Classically !
Classical Explanation of Photo Electric Effect

- As light intensity increased $\Rightarrow \vec{E}$ field amplitude larger
 - E field and electrical force seen by the “charged subatomic oscillators” larger
 - $\vec{F} = e\vec{E}$
 - More force acting on the subatomic charged oscillator
 - \Rightarrow More (work done) \Rightarrow more energy transferred to it
 - \Rightarrow Charged particle “hooked to the atom” should leave the surface with more Kinetic Energy KE !! The intensity of light (EM Wave) shining rules !

- As long as light is **intense enough**, light of ANY frequency f should cause photoelectric effect

- Because the Energy in a Wave is uniformly distributed over the Spherical wavefront incident on cathode, should be a **noticeable time lag** ΔT between time is incident & the time a photo-electron is ejected: Energy absorption time
 - How much time for electron ejection? Lets calculate it classically
Classical Physics: Time Lag in Photo-Electric Effect?

- Electron absorbs energy incident on a surface area where the electron is confined ≈ size of atom in cathode metal.
- Electron is “bound” by attractive Coulomb force in the atom, so it must absorb a minimum amount of radiation before it’s stripped off.
- Example: Laser light Intensity $I = 120\, \text{W/m}^2$ on Na metal
 - Binding energy = $2.3\, \text{eV} = \text{“Work Function } \Phi \text{”}$
 - Electron confined in Na atom, size ≈ $0.1\, \text{nm}$; how long before ejection?
 - Average Power Delivered $P_{AV} = I \cdot A$, $A = \pi r^2 \approx 3.1 \times 10^{-20}\, \text{m}^2$
 - If all energy absorbed then $\Delta E = P_{AV} \cdot \Delta T \Rightarrow \Delta T = \Delta E / P_{AV}$

$$\Delta T = \frac{(2.3\, \text{eV})(1.6 \times 10^{-19}\, \text{J/eV})}{(120\, \text{W/m}^2)(3.1 \times 10^{-20}\, \text{m}^2)} = 0.10\, \text{s}$$

- Classical Physics predicts measurable delay even by the primitive clocks of 1900.
- But in experiment, the effect was observed to be instantaneous!!
- Classical Physics fails in explaining all results.
That was a Disaster!

(# 2)

Beginning of a search for a new hero or an explanation or both!
Max Planck & Birth of Quantum Physics

Back to Blackbody Radiation Discrepancy

Planck noted the Ultraviolet catastrophe at high frequency

“Cooked” calculation with new “ideas” so as bring:

\[R(\lambda) \to 0 \text{ as } \lambda \to 0 \]
\[f \to \infty \]

- Cavity radiation as equilibrium exchange of energy between EM radiation & “atomic” oscillators present on walls of cavity
- Oscillators can have any frequency \(f \)
- But the Energy exchange between radiation and oscillator NOT continuous, it is discrete …in packets of same amount
- \[E = n \hbar f \], with \(n = 1, 2, 3, 4, \ldots \infty \)
 \(\hbar = \text{constant he invented, a number he made up!} \)
Planck’s “Charged Oscillators” in a Black Body Cavity

Planck did not know about electrons, Nucleus etc:
They had not been discovered then
Planck, Quantization of Energy & BB Radiation

- Keep the rule of counting how many waves fit in a BB Volume
- BUT Radiation energy in cavity is quantized
- EM standing waves of frequency f have energy
 $$E = n \, h f \quad (n = 1, 2, 3 \ldots 10 \ldots 1000\ldots)$$
- Probability Distribution: At an equilibrium temp T, possible energy of oscillators is distributed over a spectrum of states: $P(E) = e^{-E/kT}$
- Modes of Oscillation with:
 - Less energy: $E = hf$ = favored
 - More energy: $E = hf$ = disfavored

By this discrete statistics, large energy = high f modes of EM disfavored
Planck’s Calculation: A preview to keep the story going

\[R(\lambda) = \left(\frac{c}{4} \right) \left(\frac{8\pi}{\lambda^4} \right) \left[\frac{hc}{\lambda} \left(\frac{1}{e^{\frac{hc}{\lambda kT}} - 1} \right) \right] \]

Odd looking form

When \(\lambda \rightarrow \) large \(\Rightarrow \frac{hc}{\lambda kT} \rightarrow \) small

Recall

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \]

\[\Rightarrow e^{\frac{hc}{\lambda kT}} - 1 = \left(1 + \frac{hc}{\lambda kT} + \frac{1}{2} \left(\frac{hc}{\lambda kT} \right)^2 + \ldots \right) - 1 \]

\[= \frac{hc}{\lambda kT} \quad \text{plugging this in } R(\lambda) \text{ eq:} \]

\[R(\lambda) = \left(\frac{c}{4} \right) \left(\frac{8\pi}{\lambda^4} \right) \frac{hc}{\lambda kT} \]

Graph & Compare With BBQ data
Planck’s Formula and Small λ

When λ is small (large f)

$$\frac{1}{\frac{hc}{\lambda \kappa T}} \approx \frac{1}{\frac{hc}{hc}} = e^{-\frac{hc}{\lambda \kappa T}}$$

$$e^{\frac{hc}{\lambda \kappa T}} - 1 \quad e^{\frac{hc}{\lambda \kappa T}}$$

Substituting in $R(\lambda)$ eqn:

$$R(\lambda) = \left(\frac{c}{4} \right) \left(\frac{8\pi}{\lambda^4} \right) e^{-\frac{hc}{\lambda \kappa T}}$$

As $\lambda \to 0$, $e^{-\frac{hc}{\lambda \kappa T}} \to 0$

$$\Rightarrow R(\lambda) \to 0$$

Just as seen in the experimental data!
Planck’s Explanation of Black Body Radiation

Fit formula to Exptal data

\[h = 6.56 \times 10^{-34} \text{ J.S} \]

\[h = \text{very very small} \]
Major Consequence of Planck’s Postulate

Quantization of Energy!

Diagram:
- Energy levels: 0, hf, 2hf, 3hf, 4hf, up to \(n = \infty \)
- Arrows indicate transitions between energy levels
"IT'S AN EXCELLENT PROOF, BUT IT LACKS WARMTH AND FEELING."