Ultra Violet (Frequency) Catastrophe

R(λ) = \frac{c}{4} \frac{8\pi}{4} \frac{8\pi}{\lambda^4} kT = \frac{2\pi c}{\lambda^4} kT

Radiancy is Radiation intensity per unit λ interval.
Disaster # 2 : Photo-Electric Effect

Light of intensity I, wavelength λ and frequency ν incident on a photo-cathode

Can tune Intensity, freq, λ

Measure characteristics of current in the circuit as a fn of I, f, λ

Photo Electric Effect: Measurable Properties

- Rate of electron emission from cathode
 - From current i seen in ammeter

- Maximum kinetic energy of emitted electron
 - By applying retarding potential on electron moving towards Collector plate

 $K_{\text{MAX}} = eV_s$ (V_s = Stopping voltage)

 Stopping voltage \Rightarrow no current flows

- Effect of different types of photo-cathode metal
- Time between shining light and first sign of photo-current in the circuit
Observation: Photo-Current Vs Frequency of Incident Light

Stopping voltage V_S is a measure of the Max kinetic energy of the electron.

$$I_3 = 3I_1$$
$$I_2 = 2I_1$$
$$I_1 = \text{intensity}$$

Stopping Voltage V_S For Different Photocathode Surfaces

$$eV_S = K_{\text{MAX}} = \text{max KE}$$
Retarding Potential Vs Light Frequency (f)

Shining Light With Constant Intensity But different frequencies
Larger the frequency of light, larger is the stopping voltage (and thus the kinetic energy of the “photoelectrons”)

Current I in circuit

<table>
<thead>
<tr>
<th>Photoelectric current</th>
<th>Photon intensity I = constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_1 > \nu_2 > \nu_3$</td>
<td></td>
</tr>
</tbody>
</table>

Applied voltage

Conclusions from the Experimental Observation

- Max Kinetic energy K_{MAX} independent of Intensity I for light of same frequency
- No photoelectric effect occurs if light frequency f is below a threshold no matter how high the intensity of light
- For a particular metal, light with $f > f_0$ causes photoelectric effect IRRESPECTIVE of light intensity.
 - f_0 is characteristic of that metal
- Photoelectric effect is instantaneous !...not time delay

Can one Explain all this Classically!
As light intensity increased $\Rightarrow \tilde{E}$ field amplitude larger
- E field and electrical force seen by the “charged subatomic oscillators” Larger

- $\tilde{F} = e\tilde{E}$
 - More force acting on the subatomic charged oscillator
 - \Rightarrow More energy transferred to it
 - \Rightarrow Charged particle “hooked to the atom” should leave the surface with more Kinetic Energy KE !! The intensity of light shining rules !

- As long as light is intense enough, light of ANY frequency f should cause photoelectric effect
- Because the Energy in a Wave is uniformly distributed over the Spherical wavefront incident on cathode, there should be a noticeable time lag ΔT between time is incident & the time a photo-electron is ejected: Energy absorption time
 - How much time? Lets calculate it classically.

Classical Physics: Time Lag in Photo-Electric Effect
- Electron absorbs energy incident on a surface area where the electron is confined \equiv size of atom in cathode metal
- Electron is “bound” by attractive Coulomb force in the atom, so it must absorb a minimum amount of radiation before its stripped off
- Example: Laser light Intensity $I = 120W/m^2$ on Na metal
 - Binding energy $= 2.3 \text{ eV}$ “Work Function”
 - Electron confined in Na atom, size $= 0.1nm$..how long before ejection?
 - Average Power Delivered $P_{AV} = I \cdot A$, $A = \pi r^2 = 3.1 \times 10^{-20} m^2$
 - If all energy absorbed then $\Delta E = P_{AV} \cdot \Delta T \Rightarrow \Delta T = \Delta E / P_{AV}$

\[
\Delta T = \frac{(2.3eV)(1.6\times10^{-19} J / eV)}{(120W / m^2)(3.1\times10^{-20} m^2)} = 0.10 S
\]

- Classical Physics predicts Measurable delay even by the primitive clocks of 1900
- But in experiment, the effect was observed to be instantaneous !!
- Classical Physics fails in explaining all results
That's Disaster # 2!

Max Planck & Birth of Quantum Physics

Back to Blackbody Radiation Discrepancy

Planck noted the UltraViolet Catastrophe at high frequency

“Cooked” calculation with new “ideas” so as bring:

\[R(\lambda) \rightarrow 0 \text{ as } \lambda \rightarrow 0 \]
\[f \rightarrow \infty \]

- Cavity radiation as equilibrium exchange of energy between EM radiation & “atomic” oscillators present on walls of cavity
- Oscillators can have any frequency \(f \)
- But the Energy exchange between radiation and oscillator NOT continuous and arbitrary…it is discrete …in packets of same amount

\[E = n hf, \text{ with } n = 1, 2, 3, \ldots \infty \]
\[h = \text{constant he invented, a very small number he made up} \]
Planck’s “Charged Oscillators” in a Black Body Cavity

Planck did not know about electrons, Nucleus etc:
They were not known

Planck, Quantization of Energy & BB Radiation

• Keep the rule of counting how many waves fit in a BB Volume
• Radiation Energy in cavity is quantized
• EM standing waves of frequency f have energy
 • \(E = n \ h \ f \) (\(n = 1,2,3 \ldots 10 \ldots 1000 \ldots \))
• Probability Distribution: At an equilibrium temp T, possible Energy of wave is distributed over a spectrum of states: \(P(E) = e^{(-E/kT)} \)
• Modes of Oscillation with:
 • Less energy \(E = hf \) = favored
 • More energy \(E = hf \) = disfavored

By this statistics, large energy, high f modes of EM disfavored
Planck’s Calculation

\[R(\lambda) = \left(\frac{c}{4} \right) \left(\frac{8\pi}{\lambda^3} \right) \left(\frac{\hbar c}{\lambda} \right) \left(\frac{1}{e^{\frac{\hbar c}{\lambda kT}} - 1} \right) \]

Odd looking form

When \(\lambda \to \text{large} \Rightarrow \frac{\hbar c}{\lambda kT} \to \text{small} \)

Recall \(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \)

\[e^{\frac{\hbar c}{\lambda kT}} - 1 = (1 + \frac{\hbar c}{\lambda kT} + \frac{1}{2} \left(\frac{\hbar c}{\lambda kT} \right)^2 + \ldots) - 1 \]

\(\Rightarrow \frac{\hbar c}{\lambda kT} \)

plugging this in \(R(\lambda) \) eq:

\[R(\lambda) = \left(\frac{c}{4} \right) \left(\frac{8\pi}{\lambda^3} \right) \frac{\hbar c}{\lambda kT} \]

Graph & Compare
With BBQ data

Planck’s Formula and Small \(\lambda \)

When \(\lambda \) is small (large f)

\(\frac{1}{e^{\frac{\hbar c}{\lambda kT}} - 1} \approx \frac{1}{e^{\frac{\hbar c}{\lambda kT}}} = e^{-\frac{\hbar c}{\lambda kT}} \)

Substituting in \(R(\lambda) \) eqn:

\[R(\lambda) = \left(\frac{c}{4} \right) \left(\frac{8\pi}{\lambda^3} \right) e^{-\frac{\hbar c}{\lambda kT}} \]

As \(\lambda \to 0 \), \(e^{-\frac{\hbar c}{\lambda kT}} \to 0 \)

\[\Rightarrow R(\lambda) \to 0 \]

Just as seen in the experimental data
Planck’s Explanation of BB Radiation

Fit formula to Exptal data
\[h = 6.56 \times 10^{-34} \text{ J.S} \]
\[h = \text{very very small} \]

Major Consequence of Planck’s Formula

Quantization of Energy

Energy

\[E = n \hbar f \]

1. \(\hbar f \)
2. \(2\hbar f \)
3. \(3\hbar f \)
4. \(4\hbar f \)
Resolving Disaster #2: Who You Gonna Call?

Amongst his lesser known talents was his ability to communicate.

Here he is greeting old friend: Conrad Habicht

What are you up to? you frozen whale, you smoked, dried, canned piece of soul

Clearly, like the electron, the phrase "Whaddup Dog!" had not been discovered by then!

Einstein’s Explanation of PhotoElectric Effect

What Maxwell Saw of EM Waves

What Einstein Saw of EM Waves

Light as bullets of "photons"
Energy concentrated in photons
Energy exchanged instantly
Energy of EM Wave E = hf
Einstein’s Explanation of Photoelectric Effect

- Energy associated with EM waves in not uniformly distributed over wave-front, rather is contained in packets of “stuff” ⇒ PHOTON
- \(E = hf = \frac{hc}{\lambda} \) [but is it the same \(h \) as in Planck’s th.?]
- Light shining on metal emitter/cathode is a stream of photons of energy which depends on frequency \(f \)
- Photons knock off electron from metal instantaneously
 - Transfer all energy to electron
 - Energy gets used up to pay for Work Function \(\Phi \) (Binding Energy)
 - Rest of the energy shows up as KE of electron \(KE = hf - \Phi \)
- Cutoff Frequency \(hf_0 = \Phi \) (pops an electron, \(KE = 0 \))
- Larger intensity \(I \) → more photons incident
- Low frequency light \(f \) → not energetic enough to overcome work function of electron in atom

Photo Electric & Einstein (Nobel Prize 1915)

Light shining on metal cathode is made of photons
Energy \(E \), depends on frequency \(f \), \(E = hf = h (c/\lambda) \)
This QUANTUM of energy is used to knock off electron

\[
E = hf = \varphi + KE_{electron}
\]
\[
eV_s = KE = hf - \varphi
\]
Photo Electric & Einstein (Nobel Prize 1915)

Light shining on metal cathode is made of photons

Quantum of Energy \(E = hf = KE + \phi \quad \Rightarrow KE = hf - \phi \)

Modern View of Photoelectric Effect
Is “h” same in Photoelectric Effect as BB Radiation?

Slope \(h = 6.626 \times 10^{-34} \text{ JS} \)

Einstein \(\rightarrow \) Nobel Prize!

No matter where you travel in the galaxy and beyond…
..no matter what experiment
You do

\(h \) : Planck’s constant is same

Nobel Prize for Planck

Work Function (Binding Energy) In Metals

<table>
<thead>
<tr>
<th>Table 3-1 Photoelectric work functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Na</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Cd</td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>Ag</td>
</tr>
<tr>
<td>Pt</td>
</tr>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>Ni</td>
</tr>
<tr>
<td>Se</td>
</tr>
<tr>
<td>Pb</td>
</tr>
</tbody>
</table>
Photoelectric Effect on An Iron Surface:
Light of Intensity $I = 1.0 \, \mu W/cm^2$ incident on $1.0cm^2$ surface of Fe
Assume Fe reflects 96% of light
further only 3% of incident light is Violet region ($\lambda = 250nm$)
barely above threshold frequency for Ph. El effect
(a) Intensity available for Ph. El effect $I = 3\% \times 4\% \times (1.0 \, \mu W/cm^2)$
(b) how many photo-electrons emitted per second?
\[
\text{# of photoelectrons} = \frac{\text{Power}}{hf} = \frac{3\% \times 4\% \times (1.0 \, \mu W/cm^2) \lambda}{hc}
\]
\[
= \frac{(250 \times 10^{-9} m)(1.2 \times 10^{-9} J/s)}{(6.6 \times 10^{-34} J \cdot s)(3.0 \times 10^8 m/s)}
\]
\[
= 1.5 \times 10^9
\]
(c) Current in Ammeter : $i = (1.6 \times 10^{-19} C)(1.5 \times 10^9) = 2.4 \times 10^{-10} A$
(d) Work Function $\Phi = h\nu_0 = (4.14 \times 10^{-15} eV \cdot s)(1.1 \times 10^{15} s^{-1})$
\[
= 4.5 \, eV
\]

Facts

- The human eye is a sensitive photon detector at visible wavelengths: Need >5 photons of $\approx 550nm$ to register on your optical sensor
- The Photographic process:
 - Energy to Dissociate an AgBr molecule = 0.6eV
- Photosynthesis Process: 9 sunlight photon per reaction cycle of converting CO$_2$ and water to carbohydrate & O$_2$
 - chlorophyll absorbs best at $\lambda \approx 650$-700 nm
- Designing Space Shuttle “skin” : Why Platinum is a good thing
- designing Solar cells : picking your metal cathode
Photon & Relativity: Wave or a Particle?

- Photon associated with EM waves, travel with speed c.
- For light ($m=0$): Relativity says $E^2 = (pc)^2 + (mc^2)^2$.
- $\Rightarrow E = pc$.
- But Planck tells us: $E = hf = h(c/\lambda)$.
- Put them together: $hc/\lambda = pc$.
 - $\Rightarrow p = h/\lambda$.
 - Momentum of the photon (light) is inversely proportional to λ.

- But we associate λ with waves & p with particles.
 - what is going on??
 - A new paradigm of conversation with the subatomic particles: Quantum Physics.

X Rays “Bremsstrahlung”: The Braking Radiation

- EM radiation, produced by bombarding a metal target with energetic electrons.
- Produced in general by ALL decelerating charged particles.
- X rays: very short $\lambda \cong 60-100$ pm (10^{-12} m), large frequency f.
- Very penetrating because very energetic $E = hf$!!

Useful for probing structure of sub-atomic Particles (and your teeth).
X Ray Production Mechanism

When electron passes near a positively charged target nucleus contained in target material, it is deflected from its path because of its electrical attraction, experiences acceleration.

Rules of E&M say that any charged particle will emit radiation when accelerated. This EM radiation "appears" as photons. Since photon carries energy and momentum, the electron must lose the same amount. If all of electron's energy is lost in just one single collision then

\[e \Delta V = h f_{\text{max}} = \frac{hc}{\lambda_{\text{min}}} \quad \text{or} \quad \lambda_{\text{min}} = \frac{hc}{e \Delta V} \]

X Ray Spectrum in Molybdenum (Mo)

- Braking radiation predicted by Maxwell’s eqn
- Decelerated charged particle will radiate continuously
- Spikes in the spectrum are characteristic of the nuclear structure of target material and varies between materials
- Shown here are the α and β lines for Molybdenum (Mo)
- To measure the wavelength, diffraction grating is too wide, need smaller slits
 - An atomic crystal lattice as diffraction grating (Bragg)

\(V = 35 \text{ kV} \)
• X rays are EM waves of low wavelength, high frequency (and energy) and demonstrate characteristic features of a wave
 – Interference
 – Diffraction

• To probe into a structure you need a light source with wavelength much smaller than the features of the object being probed
 – Good Resolution $\lambda << \Delta$

• X rays allows one probe at atomic size (10^{-10})m

Compton Scattering: Quantum Pool!

• 1922: Arthur Compton (USA) proves that X-rays (EM Waves) have particle like properties (acts like photons)
 – Showed that classical theory failed to explain the scattering effect of
 • X rays on to free (not bound, barely bound electrons)

• Experiment: shine X ray EM waves on to a surface with “almost” free electrons
 – Watch the scattering of light off electron: measure time + wavelength of scattered X-ray
Compton Effect: what should Happen Classically?

- Plane wave \([f, \lambda]\) incident on a surface with loosely bound electrons \(\rightarrow\) interaction of E field of EM wave with electron: \(F = eE\)
- Electron oscillates with \(f = f_{\text{incident}}\)
- Eventually radiates spherical waves with \(f_{\text{radiated}} = f_{\text{incident}}\)
 - At all scattering angles, \(\Delta f\) & \(\Delta \lambda\) must be zero
- Time delay while the electron gets a “tan”: soaks in radiation

Compton Scattering: Setup & Results

\[\Delta \lambda = (\lambda' - \lambda) \approx (1 - \cos \theta) \]
Scattered \(\lambda'\) larger than incident
Compton Scattering: Observations

How does one explain this startling anisotropy?

Compton Scattering: Summary of Observations

\[\Delta \lambda = (\lambda' - \lambda) \propto (1 - \cos \theta) ! \]

Not isotropy in distribution of scattered radiation

How does one explain this startling anisotropy?
Compton Effect: Quantum (Relativistic) Pool

Compton Scattering: Quantum Picture

Energy Conservation:
\[E + m_e c^2 = E' + E_e \]

Momentum Conservation:
\[p = p' \cos \theta + p_e \cos \phi \]
\[0 = p' \sin \theta - p_e \sin \phi \]

Use these to eliminate electron deflection angle (not measured)

\[p_e \cos \phi = p - p' \cos \theta \]
\[p_e \sin \phi = p' \sin \theta \]

Square and add ⇒
\[p_e^2 = p^2 - 2pp' \cos \theta + p'^2 \]

Eliminate \(p_e \) & \(E_e \) using
\[E_e^2 = p_e^2 c^2 + m_e^2 c^4 \]
\[E_e = (E - E') + m_e c^2 \]
Compton Scattering: The Quantum Picture

Energy Conservation:
\[E + m_v c^2 = E' + E_e \]

Momentum Conserving:
\[p = p' \cos \theta + p_e \cos \phi \]
\[0 = p' \sin \theta - p_e \sin \phi \]

Use these to eliminate electron deflection angle (not measured)

\[
((E - E') + m_v c^2)^2 = \left[p^2 - 2pp' \cos \theta + p''^2 \right] + (m_v c^2)^2
\]

For light
\[p = \frac{E}{c} \]

\[
E^2 + E'^2 - 2EE' + 2(E - E')mc^2 = \left[\frac{E^2}{c^2} - 2 \frac{EE'}{c^2} \cos \theta + \frac{E'^2}{c^2} \right] c^2
\]

\[
\Rightarrow -EE'/(E - E')mc^2 = -EE' \cos \theta
\]

\[
\Rightarrow \frac{E - E'}{EE'} = \frac{1}{m_v c^2} (1 - \cos \theta) \Rightarrow \left(\lambda' - \lambda \right) = \left(\frac{h}{m_v c} \right) (1 - \cos \theta)
\]

Rules of Quantum Pool between Photon and Electron

\[
(\lambda' - \lambda) = \left(\frac{h}{m_e c} \right) (1 - \cos \theta)
\]
Checking for h in Compton Scattering

Plot scattered photon data, calculate slope and measure “h”

$\Delta \lambda$

Compton wavelength $\lambda_c = \frac{h}{mc}$

$(\lambda' - \lambda) = \left(\frac{h}{mc}\right)(1 - \cos \theta)$

It’s the same value for h again!!

Energy Quantization is a UNIVERSAL characteristic of energy transactions!

Interference of Waves: A Reminder

Two Identical waves $y_i(x,t) = y_{max} \sin(kx - \omega t + \phi_i)$ travel along +x and interfere to give a resulting wave $y(x,t)$. The resulting wave form depends on relative phase difference between 2 waves. Shown for $\Delta \phi = 0, \pi, \frac{2\pi}{3}$

Read Ch17-8 from Resnick etal held in Ereserve
An X-ray Tube from 20th Century

The “High Energy Accelerator” of 1900s: produced energetic light: X Ray, gave new optic to subatomic phenomena
Constructive Interference when net phase difference is 0, \(2\pi\) etc. This implied path difference traveled by two waves must be integral multiple of wavelength: \(n\lambda = 2dsin\theta\)
Proteins inside Rhinovirus reconstructed by x-ray diffraction