$\mathfrak{P h} \mathfrak{y i c s} 2 \mathfrak{D}, \mathfrak{W i n t e r} 2005$

$\mathfrak{W e c k} 9$ Exercise Solutions

6-35 Applying the momentum operator $\left[p_{x}\right]=\left(\frac{\hbar}{i}\right) \frac{d}{d x}$ to each of the candidate functions yields
(a) $\quad\left[p_{x}\right]\{A \sin (k x)\}=\left(\frac{\hbar}{i}\right) k\{A \cos (k x)\}$
(b) $\quad\left[p_{x}\right]\{A \sin (k x)-A \cos (k x)\}=\left(\frac{\hbar}{i}\right) k\{A \cos (k x)+A \sin (k x)\}$
(c) $\quad\left[p_{x}\right]\{A \cos (k x)+i A \sin (k x)\}=\left(\frac{\hbar}{i}\right) k\{-A \sin (k x)+i A \cos (k x)\}$
(d) $\left[p_{x}\right]\left\{e^{i k(x-a)}\right\}=\left(\frac{\hbar}{i}\right) i k\left\{e^{i k(x-a)}\right\}$

In case (c), the result is a multiple of the original function, since

$$
-A \sin (k x)+i A \cos (k x)=i\{A \cos (k x)+i A \sin (k x)\} .
$$

The multiple is $\left(\frac{\hbar}{i}\right)(i k)=\hbar k$ and is the eigenvalue. Likewise for (d), the operation $\left[p_{x}\right]$ returns the original function with the multiplier $\hbar k$. Thus, (c) and (d) are eigenfunctions of $\left[p_{x}\right]$ with eigenvalue $\hbar k$, whereas (a) and (b) are not eigenfunctions of this operator.

7-1 (a) The reflection coefficient is the ratio of the reflected intensity to the incident wave intensity, or $R=\frac{|(1 / 2)(1-i)|^{2}}{|(1 / 2)(1+i)|^{2}}$. But $|1-i|^{2}=(1-i)(1-i)^{*}=(1-i)(1+i)=|1+i|^{2}=2$, so that $R=1$ in this case.
(b) To the left of the step the particle is free. The solutions to Schrödinger's equation are $e^{ \pm i k x}$ with wavenumber $k=\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2}$. To the right of the step $U(x)=U$ and the equation is $\frac{d^{2} \psi}{d x^{2}}=\frac{2 m}{\hbar^{2}}(U-E) \psi(x)$. With $\psi(x)=e^{-k x}$, we find $\frac{d^{2} \psi}{d x^{2}}=k^{2} \psi(x)$, so that $k=\left[\frac{2 m(U-E)}{\hbar^{2}}\right]^{1 / 2}$. Substituting $k=\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2}$ shows that $\left[\frac{E}{(U-E)}\right]^{1 / 2}=1$ or $\frac{E}{U}=\frac{1}{2}$.
(c) For 10 MeV protons, $E=10 \mathrm{MeV}$ and $m=\frac{938.28 \mathrm{MeV}}{c^{2}}$. Using $\hbar=197.3 \mathrm{MeV} \mathrm{fm} / c\left(1 \mathrm{fm}=10^{-15} \mathrm{~m}\right)$, we find $\delta=\frac{1}{k}=\frac{\hbar}{(2 m E)^{1 / 2}}=\frac{197.3 \mathrm{MeV} \mathrm{fm} / c}{\left[(2)\left(938.28 \mathrm{MeV} / c^{2}\right)(10 \mathrm{MeV})\right]^{1 / 2}}=1.44 \mathrm{fm}$.

2]

Sch. eq: $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi=E \psi$.
To 1 ft, $V=0: \quad \frac{\partial^{2} \psi}{\partial x^{2}}=-k_{1}^{2} 4, k_{1}^{2}=\frac{2 m E}{t^{2}}$
To right, $V=0: \frac{\partial^{2} \psi}{\partial x^{2}}=-k_{2}^{2} \psi, k_{2}^{2}=\frac{2_{m}(E-U)}{h^{2}}$.
Say have incoming wave from left:

$$
\psi(x)= \begin{cases}A e^{i k_{1} x}+B e^{-i k_{1} x} & x<0 \\ C e^{i k_{2} x} & x>0\end{cases}
$$

(no $e^{-i k_{2} x}$ term bic nothing else to reflect off of).
Continuity: 4 must be single-valued at $x=0$, so

$$
A+B=C
$$

Smoothness: Derive must match, so $K_{1}(A-B)=K_{2} C$

$$
\begin{aligned}
& \Rightarrow C=\frac{2 k_{1}}{k_{1}+k_{2}} A, B=\frac{k_{1}-k_{2}}{k_{1}+k_{2}} A \\
& \text { So } \\
& \sim(x)= \begin{cases}A e^{i k_{1} x}+\frac{k_{1}-k_{2}}{k_{1}+k_{2}} A e^{-i k_{1} x} & x>0 \\
A \frac{2 k_{1}}{k_{1}+k_{2}} e^{i k_{2} x} & x<0\end{cases}
\end{aligned}
$$

b) $R=\frac{|B|^{2}}{|A|^{2}}=\frac{\left(k_{1}-k_{2}\right)^{2}}{\left(k_{1}+k_{2}\right)^{2}}$

$$
T=1-R \text {, so } T=1-\frac{\left(k_{1}-k_{2}\right)^{2}}{\left(k_{1}+k_{2}\right)^{2}}=\frac{4 k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}}
$$

$$
c \mid E \rightarrow U: K_{1} \rightarrow \frac{2 m U}{t^{2}}, k_{2} \rightarrow 0 .
$$

$$
S_{0} \quad T \rightarrow 0, R \rightarrow 1
$$

$E \rightarrow \infty: k_{1} \rightarrow k_{2}$, so $T \rightarrow 1, R \rightarrow 0$
Makes sense: As E gets low than U, no trusmitted wave, and as $E \rightarrow \infty$, the step is negligible.

$$
\begin{aligned}
& R=\frac{\left(k_{1}-k_{2}\right)^{2}}{\left(k_{1}+k_{2}\right)^{2}}=\frac{\left(1-\frac{k_{2}}{u_{1}}\right)^{2}}{\left(1+\frac{k_{2}}{k_{1}}\right)^{2}} \\
& \frac{k_{2}}{k_{1}}=\sqrt{\frac{E-0}{E}}=\sqrt{5} \text {, so } R=\frac{(1-\sqrt{5})^{2}}{(1+\sqrt{5})^{2}}=0.146 \\
& \left.T=\frac{4 \frac{k_{2}}{k_{1}}}{\left(1+\frac{u_{2}}{u_{1}}\right)^{2}}=\frac{4 \sqrt{5}}{(1+\sqrt{5})^{2}}=0.854 \text { (or } T=1-R\right) .
\end{aligned}
$$

This is unchanged for elections of the same energy.

7-5

$$
T(E)=\frac{1}{1+\frac{1}{4} \frac{U^{2}}{E(U-E)} \sinh ^{2} \alpha L}, \text { who } \alpha=\frac{\sqrt{2 n(U-E)}}{\hbar}
$$

Now, $\alpha L \gg 1$, so $\operatorname{suhh}^{2} \alpha L=\left(\frac{e^{\mu}-e^{-\alpha L}}{2}\right)^{2}=\frac{1}{4} e^{2 \alpha L}$.

$$
\text { Also, } \frac{v^{2}}{E(v-E)}=\frac{U}{E(1-E)} \approx \frac{U}{E} \text {. }>1 \text {. so }
$$

$$
T(E)=\frac{1}{1+\frac{1}{16} \frac{U}{E} e^{2 \alpha L}}=16 \frac{E}{U} e^{-2 \alpha L}
$$

b) exp. factor is $e^{-2 \alpha L}=e^{-2[\sqrt{2 \alpha-(U-E)} / \hbar] L}$
1). $\alpha=\sqrt{\frac{2 \mathrm{~m}_{e}(0.01 \mathrm{ev})}{(\mathrm{t})^{2}}}=.51 \mathrm{~mm}$

$$
e^{-2 \alpha L}=0.90
$$

2) $\alpha=\sqrt{\frac{2 m_{c}(l e v)}{(t c c)^{2}}}=5.1 \mathrm{~mm}^{-1}$

$$
e^{-2 \alpha L}=0.36
$$

3)

$$
\begin{aligned}
& \alpha=\sqrt{\frac{2 \mathrm{~m}_{e}\left(10^{6} \mathrm{ev}\right)}{\hbar^{2}}}=4.4 \times 10^{14} \mathrm{~m}^{-1} \\
& e^{-2 \alpha L}=0.41
\end{aligned}
$$

4) $\alpha=\sqrt{\frac{2 m(I J)}{\hbar}}=3.8 \times 10^{34} \mathrm{~m}^{-1}, e^{-2 \alpha L} \approx 0$ (Classically, ball cai $\begin{aligned} & \text { hop barrier). }\end{aligned}$

7-7 The continuity requirements from Equation 7.8 are

$$
\begin{array}{ll}
{[\text { continuity of } \Psi \text { at } x=0]} & A+B=C+D \\
{\left[\text { continuity of } \frac{\partial \Psi}{\partial x} \text { at } x=0\right]} & i k A-i k B=\alpha D-\alpha C \\
{[\text { continuity of } \Psi \text { at } x=L]} & C e^{-\alpha L}+D e^{+\alpha L}=F e^{i k L} \\
{\left[\text { continuity of } \frac{\partial \Psi}{\partial x} \text { at } x=L\right]} & \alpha D e^{+\alpha L}-\alpha C e^{-\alpha L}=i k F e^{i k L}
\end{array}
$$

To isolate the transmission amplitude $\frac{F}{A}$, we must eliminate from these relations the unwanted coefficients B, C, and D. Dividing the second line by $i k$ and adding to the first eliminates B, leaving A in terms of C and D. In the same way, dividing the fourth line by α and adding the result to the third line gives D (in terms of F), while subtracting the result from the third line gives C (in terms of F). Combining these results finally yields $A: A=\frac{1}{4} F e^{i k L}\left\{\left[2-\left(\frac{\alpha}{i k}+\frac{i k}{\alpha}\right)\right] e^{+\alpha L}+\left[2+\left(\frac{\alpha}{i k}+\frac{i k}{\alpha}\right)\right] e^{-\alpha L}\right\}$. The transmission probability is $T=\left|\frac{F}{A}\right|^{2}$. Making use of the identities $e^{ \pm \alpha L}=\cosh \alpha L \pm \sinh \alpha L$ and $\cosh ^{2} \alpha L=1+\sinh ^{2} \alpha L$, we obtain

$$
\begin{aligned}
\frac{1}{T} & =\left|\frac{A}{F}\right|^{2}=\frac{1}{4}\left|2 \cosh \alpha L+i\left(\frac{\alpha}{k}-\frac{k}{\alpha}\right) \sinh \alpha L\right|^{2}=\cosh ^{2} \alpha L+\frac{1}{4}\left(\frac{\alpha}{k}-\frac{k}{\alpha}\right)^{2} \sinh \alpha L \\
& =1+\frac{1}{4}\left[\frac{U-E}{E}+\frac{E}{U-E}+2\right] \sinh ^{2} \alpha L=1+\frac{1}{4}\left[\frac{U^{2}}{E(U-E)}\right] \sinh ^{2} \alpha L
\end{aligned}
$$

