Physics 2D, Winter 2005

Week 4 Exercise Solutions

4] a]
$$e_{ret} = \sigma T^{4} = 5.67 \times 10^{-9} \frac{W}{m^{2} W^{4}} (3000 \text{ K})^{4}$$

 $= [4.6 \times 10^{6} W/m^{2}]$
b] $75W = e_{ret} - Area$
 $= > Area = 1.63 \times 10^{-5} \text{ m}^{2} = [16.3 \text{ mm}^{2}]$
10) $1 \text{ photon hos} = E = hf = (6.626 \times 10^{-34} \text{ J} \cdot \text{s})(94 \text{ MHz})$
 $= 6.23 \times 10^{-26} \text{ J}$
 $100 \text{ KW} = 10^{5} \text{ J}$, so this wears $\frac{10^{5}}{623 \times 10^{-26}} = [1.6 \times 10^{30} \text{ photons/sec}]$

13 So
$$K_{max} = 2.92 eV.$$

Thus $2.92 eV = hf - \phi$
But $hf = \frac{hc}{\lambda} = \frac{11240 eV.nn}{250 nm} = 4.96 eV$
So $\phi = (4.96 - 2.92 eV) = 2.04 eV$

17 al
$$E_{13ht} = \frac{hc}{\lambda} = 4.13 \text{ eV}$$

So $\left[\frac{1}{\lambda}hium \frac{1}{\lambda} beryllium}\right]$ will eject electrons, since
 $d \in E_{13ht}$
b $K_{max} = hf - d = \begin{cases} 1.83 \text{ eV} \text{ for lithium} \\ 0.23 \text{ eV} \text{ for beryllium} \end{cases}$.
20 $K_{max} = \frac{hc}{\lambda} - d$, so for the first noveleyth,
 $I = V = \frac{hc}{\lambda} - d$. The second waveleyth is $\frac{3}{2}$, and so
 $4 eV = \frac{2hc}{\lambda} - d$. We must to solve for d , so just
 $divide the 2\frac{mb}{\lambda} - d$
 $I = V = \frac{hc}{\lambda} - d$. $V = unt to solve for d , so just
 $divide the 2\frac{mb}{\lambda} - d$
 $I = V = \frac{hc}{\lambda} - d$$

22 Need to Find Kmax, so need & for the electrons. For e's in a magnetic field, we know $F = \left[qvB = \frac{mv^2}{r}\right]$ (it's safe to use non-relativistic mechanics here, since These are not very energetic electrons). So V = qrB, and $K = \frac{1}{2}mv^2 = \frac{1}{2}\frac{q^2r^2B^2}{m}$ again, norrelativistic is OK. 25 a X-20= h (1-coso) $= \frac{h}{m(1-\cos 30^\circ)}$ = 3.25×10-13 m = 3.25×10-4 nm $b \int \lambda' = \lambda_0 + \frac{h}{m_{er}} (1 - \cos \Theta),$ And $\lambda_0 = \frac{hc}{E} = \frac{1240 eV mm}{300 \text{ keV}} = 4.13 \times 10^{-3} \text{ m}.$ So $\chi' = 4,46 \times 10^{-3}$ nm => $E' = \frac{hc}{\chi} = \frac{1240eVnm}{4.46\times 10^{-3}nm} = [278 \text{ keV}]$ CINEE = E'-E = [22 KeV] (that's just The Kinetic enersy -you could include rest enersy too if you wanted).

3

4

$$\begin{array}{l} \underbrace{30}_{n} & \text{We how } \lambda' = \lambda_0 + \frac{h}{wec} (1 - \cos \Theta). \\ \\ & \text{For max eursy transfer, } \lambda \text{ should increase (i.e. The eursy of the photon should decrease) as much as possible \\ & \text{So } \Theta = 180^\circ \Rightarrow \left[\lambda' = \lambda_0 + \frac{2h}{wec} \right] \\ & \text{Now, } E = \frac{hc}{\lambda} \quad \text{for a photon }. \\ & \text{Let's call } E' = \frac{hc}{\lambda'}, E_0 = \frac{hc}{\lambda_0}. \\ & \text{So } \text{The } E' = \frac{hc}{\lambda'} = \frac{hc}{(\lambda_0 + \frac{2h}{wec})}. \\ & \text{Let's assume } \frac{2h}{wec} \ll \lambda_0 \text{ and check this later.} \\ & \text{Then } \frac{1}{\lambda_0 + \frac{2h}{wec}} = \frac{1}{\lambda_0 (1 + \frac{2h}{wec\lambda_0})} \approx \frac{1}{\lambda_0} \left(1 - \frac{2h}{wec\lambda_0}\right) \\ & \text{So } \left[E' = E_0 - \frac{2h^2 c^2}{we^2 \lambda_0^*} \right] \quad (\text{In multiplied host bottom of the } \\ & \text{Thes much sense: } \Delta E < O \text{ for } \text{The photon.} \\ & \text{So } \left[\Delta E \right] = \frac{2h^2 c^2}{we^2 \lambda_0^*}, \text{ and we how } |\Delta E| = 30 \text{ keV}. \end{array}$$

So
$$\lambda_{0} = \left(\frac{2(l_{12}L_{0})^{2}}{mec^{2}|\Delta E|}\right)^{l_{2}}$$

$$= \left(\frac{2(l_{2}+0eV\cdot nm)^{2}}{5llkeV \cdot 30keV}\right)^{l_{2}} = \left[\frac{1.42\times10^{-7}}{nm}\right]$$
Is This consistent with $\frac{2h}{mec} \ll \lambda_{0}$?
Well, $\frac{2h}{mec} = \frac{2hc}{wec^{2}} = \frac{2\cdot1240}{5llkeW \times 10^{-3}}$ nm = 4.85×10⁻³ nm
So $\left(\frac{2h}{mec}\right) = 0.34$ which is kind of small.
Not a great approximation, but a decent one.
 $\frac{34}{1}$ From #30, we know $\lambda_{0} = \left(\frac{2(hc)^{2}}{mec^{2}|\Delta E|}\right)^{l_{2}}$
So $\lambda_{0} = \left(\frac{2(l_{2}+0eV\cdot nm)^{2}}{5llkeV \cdot 50keV}\right)^{l_{2}} = @ 1. |\times|0^{-2}nm$.
 $\Rightarrow E = \frac{hc}{\lambda_{0}} = \frac{l_{2}+0eV\cdot nm}{l_{1}(1\times10^{-2}nm)} = [113 \text{ keV}]$

6

36 [Miller Efinal, photon = 80 keV

$$E_e = 25 \text{ keV}$$

So by ewgy conservation, F_i , photon = 105 keV
 $\Rightarrow \lambda = \frac{hc}{E} = [1.18 \times 10^{-2} \text{ nm}]$

3-43 (a) A 4000 Å wavelength photon is backscattered, $\theta = \pi$ by an electron. The energy transferred to the electron is determined by using the Compton scattering formula $\lambda' - \lambda_0 = \left(\frac{hc}{E_e}\right)(1 - \cos\theta)$ where we take $E_e = m_e c^2$ for the rest energy of the electron

and so $E_e \approx 0.511$ MeV. Upon substitution, one obtains

$$\Delta \lambda = 2(0.002 \ 43 \ \text{nm}) = 0.004 \ 86 \ \text{nm}$$
.

The energy of a photon is related to its wavelength by the relation $E = \frac{hc}{\lambda}$, so the change in energy associated with a corresponding change in wavelength is given by $\Delta E = -\left(\frac{hc}{\lambda^2}\right)\Delta\lambda$. Upon making substitutions one obtains the magnitude $\Delta E = 6.037 \ 9 \times 10^{-24} \ J$ and using the conversion factor 1 Joule of energy is equivalent to $1.602 \times 10^{-19} \ eV$. The result is $\Delta E = 3.77 \times 10^{-5} \ eV$.

(b) This may be compared to the energy that would be acquired by an electron in the photoelectric effect process. Here again the energy of a photon of wavelength λ is given by $E = \frac{hc}{\lambda}$. With $\lambda = 400$ nm, one obtains

$$E = \frac{\left(6.626 \times 10^{-34} \text{ J} \cdot \text{s}\right)\left(3.0 \times 10^{8} \text{ m/s}\right)}{400 \times 10^{-9} \text{ m}} = 4.97 \times 10^{-19} \text{ J}$$

and upon converting to electron volts, E = 3.10 eV. $\frac{\Delta E}{E_{\text{photon}}} \approx 10^{-5}$.

The maximum energy transfer is about five orders of magnitude smaller than the energy necessary for the photoelectric effect.

(c) Could "a violet photon" eject an electron from a metal by Compton scattering? The answer is no, because the maximum energy transfer occurring at $\theta = \pi$ is not sufficient.