Physics 2D, Winter 2005

Wekk 3 ExeróseSolutions

See last week's solutions for problems 2-4 through 2-16.

2-22
(a) $\quad K=\gamma m c^{2}-m c^{2}=V q$ and so, $\gamma^{2}=\left(1+\frac{V q}{m c^{2}}\right)^{2}$ and $\frac{v}{c}=\left\{1-\left(1+\frac{V q}{m c^{2}}\right)^{-2}\right\}^{1 / 2}$

$$
\frac{v}{c}=\left\{1-\frac{1}{1+\left(5.0 \times 10^{4} \mathrm{eV} / 0.511 \mathrm{MeV}\right)^{2}}\right\}^{1 / 2}=0.4127
$$

or $v=0.413 c$.
(b) $\quad K=\frac{1}{2} m v^{2}=V q$

$$
v=\left(\frac{2 V q}{m}\right)^{1 / 2}=\left\{\frac{2\left(5.0 \times 10^{4} \mathrm{eV}\right)}{0.511 \mathrm{MeV} / c^{2}}\right\}^{1 / 2}=0.442 c
$$

(c) The error in using the classical expression is approximately $\frac{3}{40} \times 100 \%$ or about 7.5% in speed.
(a) The mass difference of the two nuclei is

$$
\begin{aligned}
& \Delta m=54.9279 \mathrm{u}-54.9244 \mathrm{u}=0.0035 \mathrm{u} \\
& \Delta E=(931 \mathrm{MeV} / \mathrm{u})(0.0035 \mathrm{u})=3.26 \mathrm{MeV}
\end{aligned}
$$

(b) The rest energy for an electron is 0.511 MeV . Therefore,

$$
K=3.26 \mathrm{MeV}-0.511 \mathrm{MeV}=2.75 \mathrm{MeV}
$$

$\Delta m=m \quad-m_{p}-m_{e}=1.008665 \mathrm{u}-1.007276 \mathrm{u}-0.0005485 \mathrm{u}=8.404 \times 10^{-4} \mathrm{u}$
$E=c^{2}\left(8.404 \times 10^{-4} \mathrm{u}\right)=\left(8.404 \times 10^{-4} \mathrm{u}\right)(931.5 \mathrm{MeV} / \mathrm{u})=0.783 \mathrm{MeV}$.
(a) Using Equation 2.4
$p=e^{-} B R=\left(1.60 \times 10^{-19} \mathrm{C}\right) \beta R \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{C} \cdot \mathrm{s}=1.60 \times 10^{-19} B R \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
To convert $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$ to $\mathrm{MeV} / \mathrm{c}$, use
$1 \mathrm{MeV} / \mathrm{c}=\frac{\left(10^{6}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)(1 \mathrm{~J} / \mathrm{C})}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=5.34 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, so that

$$
p=\frac{\left(1.60 \times 10^{-19} B R \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)(1 \mathrm{MeV} / \mathrm{c})}{5.34 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}=300 B R \mathrm{MeV} / \mathrm{c}
$$

Substituting numerical values

$$
p(\text { in } \mathrm{MeV} / c)=300 B R=(300)(2.00 \mathrm{~T})(0.343 \mathrm{~m})=206 \mathrm{MeV} / c
$$

Since the momentum of the K^{0} is zero before the decay, conservation of momentum requires the pion momenta to be equal in magnitude and opposite in direction. The pion's speed u may be found by noting that $\frac{p}{E}=\frac{m u / \sqrt{1-u^{2} / c^{2}}}{m c^{2} / \sqrt{1-u^{2} / c^{2}}}=\frac{u}{c^{2}}$ or $\frac{u}{c}=\frac{p c}{E}$ where p is the pion momentum and E is the pion's total energy. Thus for either pion, $\frac{u}{c}=\frac{p c}{E}=\frac{p c}{\left[p^{2} c^{2}+\left(m c^{2}\right)^{2}\right]^{1 / 2}}$ where m is the pion's mass. Finally,

$$
\frac{u}{c}=\frac{206 \mathrm{MeV}}{\sqrt{(206 \mathrm{MeV})^{2}+(104 \mathrm{MeV})^{2}}}=0.827
$$

(b) Conservation of mass-energy requires that $E_{\mathrm{K}^{0}}=2 E$ where $E_{\mathrm{K}^{0}}$ is the total energy of a pion. As the K^{0} pion decays at rest,

$$
E_{\mathrm{K}^{0}}=m_{\mathrm{K}^{0}} c^{2}=2 \sqrt{p^{2} c^{2}+\left(m c^{2}\right)^{2}}=2 \sqrt{(206)^{2}+(140)^{2}} \mathrm{MeV}=498 \mathrm{MeV}
$$

or $m_{\mathrm{K}^{0}}=498 \mathrm{MeV} / c^{2}$.
In this problem, M is the mass of the initial particle, m_{l} is the mass of the lighter fragment, v_{l} is the speed of the lighter fragment, m_{h} is the mass of the heavier fragment, and v_{h} is the speed of the heavier fragment. Conservation of mass-energy leads to

$$
M c^{2}=\frac{m_{l} c^{2}}{\sqrt{1-v_{l}^{2} / c^{2}}}+\frac{m_{h} c^{2}}{\sqrt{1-v_{h}^{2} / c^{2}}}
$$

From the conservation of momentum one obtains

$$
\begin{aligned}
& \left(m_{l}\right)(0.987 c)(6.22)=\left(m_{h}\right)(0.868 c)(2.01) \\
& m_{l}=\frac{\left(m_{h}\right)(0.868 c)(2.01)}{(0.987)(6.22)}=0.284 m_{h}
\end{aligned}
$$

Substituting in this value and numerical quantities in the mass-energy conservation equation, one obtains $3.34 \times 10^{-27} \mathrm{~kg}=6.22 m_{l}+2.01 m_{h}$ which in turn gives
$3.34 \times 10^{-27} \mathrm{~kg}=(6.22)(0.284) m_{l}+2.01 m_{h}$ or $m_{h}=\frac{3.34 \times 10^{-27} \mathrm{~kg}}{3.78}=8.84 \times 10^{-28} \mathrm{~kg}$ and $m_{l}=(0.284) m_{h}=2.51 \times 10^{-28} \mathrm{~kg}$.

$$
\begin{aligned}
& E_{1}=K+m c^{2} \\
& E_{2}=m c^{2} \\
& E_{1}^{2}=p_{1}^{2} c^{2}+m^{2} c^{4} \\
& p_{2}=0 .
\end{aligned}
$$

In the final state, $E_{\mathrm{f}}=K_{\mathrm{f}}+M c^{2}: E_{\mathrm{f}}^{2}=p_{\mathrm{f}}^{2} c^{2}+M^{2} c^{4}$.
By energy conservation, $E_{1}+E_{2}=E_{\mathrm{f}}$, so

$$
\begin{gathered}
E_{1}^{2}+2 E_{1} E_{2}+E_{2}^{2}=E_{\mathrm{f}}^{2} \\
p_{1}^{2} c^{2}+m^{2} c^{4}+2\left(K+m c^{2}\right) m c^{2}+m^{2} c^{4}=p_{\mathrm{f}}^{2} c^{2}+M^{2} c^{4}
\end{gathered}
$$

By conservation of momentum, $p_{1}=p_{\mathrm{f}}$.

Initial (be am s)

Final (beams)

Then $M^{2} c^{4}=2 K m c^{2}+4 m^{2} c^{4}=\frac{4 K m^{2} c^{4}}{2 m c^{2}}+4 m^{2} c^{4}$

$$
M c^{2}=2 m c^{2} \sqrt{1+\frac{K}{2 m c^{2}}}
$$

By contrast, for colliding beams in the original state, we have $E_{1}=K+m c^{2}$ and $E_{2}=K+m c^{2}$. In the final state, $E_{\mathrm{f}}=M c^{2}$

$$
E_{1}+E_{2}=E_{\mathrm{f}}: K+m c^{2}+K+m c^{2}=M c^{2}
$$

$M c^{2}+2 m c^{2}\left(1+\frac{K}{2 m c^{2}}\right)$.
(a) $\quad \rho=\frac{\text { energy }}{\Delta t}=\frac{2 \mathrm{~J}}{100 \times 10^{-15} \mathrm{~s}}=2.00 \times 10^{13} \mathrm{~W}$
(b) The kinetic energy of one electron with $v=0.9999 c$ is

$$
\begin{aligned}
(\gamma-1) m c^{2} & =\left(\frac{1}{\sqrt{1-0.9999^{2}}}\right)\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=69.7\left(8.20 \times 10^{-14} \mathrm{~J}\right) \\
& =5.72 \times 10^{-12} \mathrm{~J}
\end{aligned}
$$

Then we require $\frac{0.01}{100}(2 \mathrm{~J})=N\left(5.72 \times 10^{-12} \mathrm{~J}\right)$

$$
N=\frac{2 \times 10^{-4} \mathrm{~J}}{5.72 \times 10^{-12} \mathrm{~J}}=3.50 \times 10^{7} .
$$

