1-2 IN THE REST FRAME:
In an elastic collision, energy and momentum are conserved.

\[p_i = m_1v_{i1} + m_2v_{i2} = p_f = m_1v_{f1} + m_2v_{f2} \]

or \[m_1(v_{i1} - v_{f1}) = -m_2(v_{i2} - v_{f2}) \]. The energy equation is

\[E_i = E_f = \frac{1}{2} m_1v_{i1}^2 + \frac{1}{2} m_2v_{i2}^2 = \frac{1}{2} m_1v_{f1}^2 + \frac{1}{2} m_2v_{f2}^2 \]

or \[m_1(v_{i1} - v_{f1})(v_{i1} + v_{f1}) = -m_2(v_{i2} - v_{f2})(v_{i2} + v_{f2}) \]. Substituting the momentum equation into the energy equation yields a very simple and general result (true even for three-dimensional collision if the velocities are replaced as vectors) \((v_{i1} + v_{i2}) = (v_{i2} + v_{i2})\) or as Newton put it originally, the final relative velocity is opposite to the initial relative velocity:

\[(v_{i1} - v_{f1}) = - (v_{i2} - v_{f2}) \]

for elastic collision (and a fraction of the initial for general collisions). Now, putting in the numerical values, the momentum equation, and this relative velocity equation gives:

\[m_1v_{f1} + m_2v_{f2} = 0.3v_{f1} + 0.2v_{f2} = 0.9 \text{ kg m/s}, \text{ and } (5 - (-3)) = - (v_{i1} - v_{i2}) \]. Solving the two equations, two unknowns, we find \(v_{i1} = -1.4 \text{ m/s} \) and \(v_{i2} = +6.6 \text{ m/s} \).

IN THE MOVING FRAME:
The Galilean velocity transformations hold.

\[
\begin{align*}
 v'_{1i} &= v_{1i} - v' = 20 \text{ m/s} - 10 \text{ m/s} = 10 \text{ m/s} \\
 v'_{2i} &= v_{2i} - v' = 0 \text{ m/s} - 10 \text{ m/s} = -10 \text{ m/s} \\
 p'_{i} &= m_1v'_{1i} + m_2v'_{2i} = (2 \text{ 000 kg})(10 \text{ m/s}) - (1 \text{ 500 kg})(10 \text{ m/s}) = 5 \times 10^3 \text{ kg m/s} \\
 p'_{f} &= (2 \text{ 000 kg} + 1 \text{ 500 kg})v'_{f} = (3 \text{ 500 kg})(v_{f} - 10 \text{ m/s}), \text{ and because } v_{i} = 11.4 \text{ m/s}, v_{f} = 6.6 \text{ m/s} \\
 p'_{f} &= 5 \times 10^3 \text{ kg m/s} \\
\end{align*}
\]

1-3 IN THE REST FRAME:
In an elastic collision energy and momentum are conserved.

\[p_i = m_1v_{i1} + m_2v_{i2} = (0.3 \text{ kg})(5 \text{ m/s}) + (0.2 \text{ kg})(-3 \text{ m/s}) = 0.9 \text{ kg m/s} \]

\[p_f = m_1v_{f1} + m_2v_{f2} \]

This equation has two unknowns, therefore, apply the conservation of kinetic energy

\[E_i = E_f = \frac{1}{2} m_1v_{i1}^2 + \frac{1}{2} m_2v_{i2}^2 = \frac{1}{2} m_1v_{f1}^2 + \frac{1}{2} m_2v_{f2}^2 \]

and conservation of momentum one finds that \(v_{f1} = -1.31 \text{ m/s} \) and \(v_{f2} = 6.47 \text{ m/s} \) or \(v_{f1} = -1.56 \text{ m/s} \) and \(v_{f2} = 6.38 \text{ m/s} \). The difference in values is due to the rounding off errors in the numerical calculations of the mathematical quantities. If these two values are averaged the values are \(v_{f1} = -1.4 \text{ m/s} \) and \(v_{f2} = 6.6 \text{ m/s} \), \(p_f = 0.9 \text{ kg m/s} \). Thus, \(p_i = p_f \).
IN THE MOVING FRAME:
Make use of the Galilean velocity transformation equations. \(p'_i = m_i v'_i + m_2 v'_2 \); where \(v'_1 = v_{1i} - v' = 5 \text{ m/s} - (-2 \text{ m/s}) = 7 \text{ m/s} \). Similarly, \(v'_2 = -1 \text{ m/s} \) and \(p'_i = 1.9 \text{ kg} \cdot \text{m/s} \). To find \(p'_i \) use \(v'_1 = v_{1i} - v' \) and \(v'_2 = v_{2i} - v' \) because the prime system is now moving to the left.
Using these results give \(p'_i = 1.9 \text{ kg} \cdot \text{m/s} \).

1-4 (a) In all cases one wants the speed of the plane relative to the ground. For the upwind and downwind legs, where \(v' \) in the figure is given by \((c^2 - v^2)^{1/2} \).

\[
t_{u+d} = \frac{L}{c - v} + \frac{L}{c + v} = \frac{2L}{c} \left(\frac{1}{1 - v^2/c^2} \right).
\]

For the crosswind case, the plane’s speed along \(L \) is \(v' = (c^2 - v^2)^{1/2} \):

\[
t_c = \frac{2L}{\sqrt{c^2 - v^2}} = \frac{2L}{c} \left(\frac{1}{\sqrt{1 - (v/c)^2}} \right).
\]

\[
t_{u+d} = \frac{2(100 \text{ mi})}{500 \text{ mi/h}} \left(\frac{1}{\sqrt{1 - (0.1)^2}} \right) = 0.4167 \text{ h}
\]

\[
t_c = \frac{2(100 \text{ mi})}{500 \text{ mi/h}} \left(\frac{1}{\sqrt{0.96}} \right) = 0.4082 \text{ h}
\]

(b) \(\Delta t = t_{u+d} - t_c = 0.0085 \text{ h} = 0.009 \text{ h} \) or \(0.510 \text{ min} = 0.5 \text{ min} \)

1-5 This is a case of dilation. \(T = \gamma T' \) in this problem with the proper time \(T' = T_0 \)

\[
T = \left[1 - \left(\frac{v}{c} \right)^2 \right]^{-1/2} T_0 \Rightarrow \frac{v}{c} = \left[1 - \left(\frac{T_0}{T} \right)^2 \right]^{1/2}.
\]

in this case \(T = 2T_0, v = \left[1 - \left(\frac{L_0/2}{L_0} \right)^2 \right]^{1/2} = \left[1 - \left(\frac{1}{4} \right) \right]^{1/2} \) therefore \(v = 0.866c \).

1-6 This is a case of length contraction. \(L = \frac{L'}{\gamma} \) in this problem the proper length \(L' = L_0 \)

\[
L = \left[1 - \frac{v^2}{c^2} \right]^{-1/2} L_0 \Rightarrow v = c \left[1 - \left(\frac{L}{L_0} \right)^2 \right]^{1/2} \text{; in this case } L = \frac{L_0}{2}, v = \left[1 - \left(\frac{L_0/2}{L_0} \right)^2 \right]^{1/2} = \left[1 - \left(\frac{1}{4} \right) \right]^{1/2} \text{ therefore } v = 0.866c .
\]

1-7 The problem is solved by using time dilation. This is also a case of \(v << c \) so the binomial expansion is used \(\Delta t = \gamma \Delta t' = \left[1 + \frac{v^2}{2c^2} \right] \Delta t' \)

\[
\Delta t = \left(24 \text{ h/day} \right) \left(3600 \text{ s/h} \right) = 86400 \text{ s} \text{;} \quad \Delta t' = \Delta t - 1 = 86399 \text{ s} .
\]
\[v = \left[\frac{2(86\ 400\ \text{s} - 86\ 399\ \text{s})}{86\ 399\ \text{s}} \right]^{1/2} = 0.004\ 8c = 1.44 \times 10^6\ \text{m/s}. \]

1-8 \[L = \frac{L'}{\gamma} \]
\[\frac{1}{\gamma} = \frac{L}{L'} = \left[1 - \frac{v^2}{c^2} \right]^{1/2} \]
\[v = c \left[1 - \left(\frac{L}{L'} \right)^2 \right]^{1/2} = c \left[1 - \left(\frac{75}{100} \right)^2 \right]^{1/2} = 0.661c \]

1-10 (a) \[\tau = \gamma \tau' \text{ where } \beta = \frac{v}{c} \text{ and} \]
\[\gamma = \left(1 - \beta^2 \right)^{-1/2} = \tau \left(1 - \frac{v^2}{c^2} \right)^{-1/2} = \left(2.6 \times 10^{-8}\ \text{s} \right) \left[1 - (0.95)^2 \right]^{1/2} = 8.33 \times 10^{-8}\ \text{s} \]

(b) \[d = v\tau = (0.95) \left(3 \times 10^8 \right) (8.33 \times 10^{-8}\ \text{s}) = 24\ \text{m} \]

1-12 (a) \[70\ \text{beats/min or } \Delta t' = \frac{1}{70}\ \text{min} \]

(b) \[\Delta t = \gamma \Delta t' = \left[1 - (0.9)^2 \right]^{-1/2} \left(\frac{1}{70} \right) \text{ min} = 0.0328\ \text{min/beat or the number of beats per minute } \approx 30.5 = 31. \]

1-14 (a) Only the \(x \)-component of \(L_0 \) contracts.

\[L_x' = L_0 \cos \theta_0 \Rightarrow L_x = L_0 \cos \theta_0 / \gamma \]
\[L_y' = L_0 \sin \theta_0 \Rightarrow L_y = L_0 \sin \theta \]
\[L = \sqrt{L_x^2 + L_y^2} = \sqrt{L_0^2 \cos^2 \theta / \gamma^2 + L_0^2 \sin^2 \theta_0} \]
\[= L_0 \sqrt{\cos^2 \theta_0 \left(1 - \frac{v^2}{c^2} \right) + \sin^2 \theta_0} = L_0 \sqrt{1 - \frac{v^2}{c^2} \cos^2 \theta_0} \]

(b) As seen by the stationary observer, \[\tan \theta = \frac{L_y}{L_x} = \frac{L_0 \sin \theta_0}{L_0 \cos \theta_0 / \gamma} = \gamma \tan \theta_0. \]
1-16 For an observer approaching a light source, \(\lambda_{ob} = \left[\frac{(1 - \frac{v}{c})^2}{(1 + \frac{v}{c})^2} \right] \lambda_{source} \). Setting \(\beta = \frac{v}{c} \) and after some algebra we find,

\[
\beta = \frac{\lambda_{source}^2 - \lambda_{obs}^2}{\lambda_{source}^2 + \lambda_{obs}^2} = \frac{(650 \text{ nm})^2 - (550 \text{ nm})^2}{(650 \text{ nm})^2 + (550 \text{ nm})^2} = 0.166
\]

\[
v = 0.166c = (4.98 \times 10^7 \text{ m/s}) (2.237 \text{ mi/h}) (\text{m/s})^{-1} = 1.11 \times 10^8 \text{ mi/h}.
\]

1-17 (a) Galaxy A is approaching and as a consequence it exhibits blue shifted radiation.

From Example 1.6, \(\beta = \frac{v}{c} = \frac{\lambda_{source}^2 - \lambda_{obs}^2}{\lambda_{source}^2 + \lambda_{obs}^2} \) so that \(\beta = \frac{(550 \text{ nm})^2 - (450 \text{ nm})^2}{(550 \text{ nm})^2 + (450 \text{ nm})^2} = 0.198 \).

Galaxy A is approaching at \(v = 0.198c \).

(b) For a red shift, B is receding. \(\beta = \frac{v}{c} = \frac{\lambda_{source}^2 - \lambda_{obs}^2}{\lambda_{source}^2 + \lambda_{obs}^2} \) so that

\[
\beta = \frac{(700 \text{ nm})^2 - (550 \text{ nm})^2}{(700 \text{ nm})^2 + (550 \text{ nm})^2} = 0.237 \). Galaxy B is receding at \(v = 0.237c \).

1-18 (a) Let \(f_c \) be the frequency as seen by the car. Thus, \(f_c = \frac{f_{source}}{c + v} \) and, if \(f \) is the frequency of the reflected wave, \(f = \frac{f_{source}}{c - v} \). Combining these equations gives

\[
f = f_{source} \frac{(c + v)}{(c - v)}
\]

(b) Using the above result, \(f(c - v) = f_{source}(c + v) \), which gives

\[
(f - f_{source}) c = (f + f_{source}) v = 2 f_{source} v.
\]

The beat frequency is then \(f_{beat} = f - f_{source} = \frac{2 f_{source} v}{c} = \frac{2v}{\lambda} \).

(c) \(f_{beat} = \frac{2 (30.0 \text{ m/s}) (10.0 \times 10^9 \text{ Hz})}{3.00 \times 10^8 \text{ m/s}} = \frac{2(30.0 \text{ m/s})}{0.030 \text{ m}} = 2 \text{ 000 Hz} = 2.00 \text{ kHz} \)

\[
\lambda = \frac{c}{f_{source}} = \frac{3.00 \times 10^8 \text{ m/s}}{10.0 \times 10^9 \text{ Hz}} = 3.00 \text{ cm}
\]

(d) \(v = \frac{f_{beat} \lambda}{2} \) so,

\[
\Delta v = \frac{\Delta f_{beat} \lambda}{2} = \frac{(5 \text{ Hz})(0.030 \text{ m})}{2} = 0.075 \text{ m/s} = 0.2 \text{ mi/h}
\]