Physics 2D, Winter 2005 Week 1 Exercise Solutions: Relativity

1-2 IN THE REST FRAME:

In an elastic collision, energy and momentum are conserved.

$$
p_{\mathrm{i}}=m_{1} v_{1 \mathrm{i}}+m_{2} v_{2 \mathrm{i}}=p_{\mathrm{f}}=m_{1} v_{1 \mathrm{f}}+m_{2} v_{2 \mathrm{f}}
$$

or $m_{1}\left(v_{1 \mathrm{i}}-v_{1 \mathrm{f}}\right)=-m_{2}\left(v_{2 \mathrm{i}}-v_{2 \mathrm{f}}\right)$. The energy equation is

$$
E_{\mathrm{i}}=E_{\mathrm{f}}=\frac{1}{2} m_{1} v_{1 \mathrm{i}}^{2}+\frac{1}{2} m_{2} v_{2 \mathrm{i}}^{2}=\frac{1}{2} m_{1} v_{1 \mathrm{f}}^{2}+\frac{1}{2} m_{2} v_{2 \mathrm{f}}^{2}
$$

or $m_{1}\left(v_{1 \mathrm{i}}-v_{1 \mathrm{f}}\right)\left(v_{1 \mathrm{i}}+v_{1 \mathrm{f}}\right)=-m_{2}\left(v_{2 \mathrm{i}}-v_{2 \mathrm{f}}\right)\left(v_{2 \mathrm{i}}+v_{2 \mathrm{f}}\right)$. Substituting the momentum equation into the energy equation yields a very simple and general result (true even for three-dimensional collision if the velocities are replaced as vectors) $\left(v_{1 \mathrm{i}}+v_{1 \mathrm{f}}\right)=\left(v_{2 \mathrm{i}}+v_{2 \mathrm{f}}\right)$ or as Newton put it originally, the final relative velocity is opposite to the initial relative velocity:

$$
\left(v_{1 i}-v_{2 i}\right)=-\left(v_{1 f}-v_{2 f}\right)
$$

for elastic collision (and a fraction of the initial for general collisions). Now, putting in the numerical values, the momentum equation, and this relative velocity equation gives: $m_{1} v_{1 \mathrm{f}}+m_{2} v_{2 f}=0.3 v_{1 \mathrm{f}}+0.2 v_{2 f}=0.9 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, and $(5-(-3))=-\left(v_{1 f}-v_{2 f}\right)$. Solving the two equations, two unknowns, we find $v_{1 f}=-1.4 \mathrm{~m} / \mathrm{s}$ and $v_{2 f}=+6.6 \mathrm{~m} / \mathrm{s}$.

IN THE MOVING FRAME:

The Galilean velocity transformations hold.

$$
\begin{aligned}
& v_{1 \mathrm{i}}^{\prime}-v^{\prime}=20 \mathrm{~m} / \mathrm{s}-10 \mathrm{~m} / \mathrm{s}=10 \mathrm{~m} / \mathrm{s} \\
& v_{2 \mathrm{i}}^{\prime}=v_{2 \mathrm{i}}-v^{\prime}=0 \mathrm{~m} / \mathrm{s}-10 \mathrm{~m} / \mathrm{s}=-10 \mathrm{~m} / \mathrm{s} \\
& p_{\mathrm{i}}^{\prime}=m_{1} v_{1 \mathrm{i}}^{\prime}+m_{2} v_{2 \mathrm{i}}^{\prime}=(2000 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s})-(1500 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s})=5 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& p_{\mathrm{f}}^{\prime}=(2000 \mathrm{~kg}+1500 \mathrm{~kg}) v_{\mathrm{f}}^{\prime}=(3500 \mathrm{~kg})\left(v_{\mathrm{f}}-10 \mathrm{~m} / \mathrm{s}\right), \text { and because } v_{\mathrm{f}}=11.4 \mathrm{~m} / \mathrm{s}, \\
& p_{\mathrm{f}}^{\prime}=5 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

1-3 IN THE REST FRAME:

In an elastic collision energy and momentum are conserved.

$$
\begin{aligned}
& p_{\mathrm{i}}=m_{1} v_{1 \mathrm{i}}+m_{2} v_{2 \mathrm{i}}=(0.3 \mathrm{~kg})(5 \mathrm{~m} / \mathrm{s})+(0.2 \mathrm{~kg})(-3 \mathrm{~m} / \mathrm{s})=0.9 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& p_{\mathrm{f}}=m_{1} v_{1 \mathrm{f}}+m_{2} v_{2 \mathrm{f}}
\end{aligned}
$$

This equation has two unknowns, therefore, apply the conservation of kinetic energy $E_{\mathrm{i}}=E_{\mathrm{f}}=\frac{1}{2} m_{1} v_{1 \mathrm{i}}^{2}+\frac{1}{2} m_{2} v_{2 \mathrm{i}}^{2}=\frac{1}{2} m_{1} v_{1 \mathrm{f}}^{2}+\frac{1}{2} m_{2} v_{2 \mathrm{f}}^{2}$ and conservation of momentum one finds that $v_{1 \mathrm{f}}=-1.31 \mathrm{~m} / \mathrm{s}$ and $v_{2 f}=6.47 \mathrm{~m} / \mathrm{s}$ or $v_{1 \mathrm{f}}=-1.56 \mathrm{~m} / \mathrm{s}$ and $v_{2 f}=6.38 \mathrm{~m} / \mathrm{s}$. The difference in values is due to the rounding off errors in the numerical calculations of the mathematical quantities. If these two values are averaged the values are $v_{1 f}=-1.4 \mathrm{~m} / \mathrm{s}$ and $v_{2 f}=6.6 \mathrm{~m} / \mathrm{s}$, $p_{\mathrm{f}}=0.9 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. Thus, $p_{\mathrm{i}}=p_{\mathrm{f}}$.

IN THE MOVING FRAME:

Make use of the Galilean velocity transformation equations. $p_{\mathrm{i}}^{\prime}=m_{1} v_{1 i}^{\prime}+m_{2} v_{2 i}^{\prime}$; where $v_{1 \mathrm{i}}^{\prime}=v_{1 \mathrm{i}}-v^{\prime}=5 \mathrm{~m} / \mathrm{s}-(-2 \mathrm{~m} / \mathrm{s})=7 \mathrm{~m} / \mathrm{s}$. Similarly, $v_{2 \mathrm{i}}^{\prime}=-1 \mathrm{~m} / \mathrm{s}$ and $p_{\mathrm{i}}^{\prime}=1.9 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. To find p_{f}^{\prime} use $v_{1 \mathrm{f}}^{\prime}=v_{1 \mathrm{i}}-v^{\prime}$ and $v_{2 \mathrm{f}}^{\prime}=v_{2 \mathrm{i}}-v^{\prime}$ because the prime system is now moving to the left. Using these results give $p_{\mathrm{f}}^{\prime}=1.9 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.

1-4 (a) In all cases one wants the speed of the plane relative to the ground. For the upwind and downwind legs, where v^{\prime} in the figure is given by $\left(c^{2}-v^{2}\right)^{1 / 2}$

$$
t_{u+d}=\frac{L}{c-v}+\frac{L}{c+v}=\frac{2 L}{c}\left(\frac{1}{1-v^{2} / c^{2}}\right)
$$

For the crosswind case, the plane's speed along L is $v^{\prime}=\left(c^{2}-v^{2}\right)^{1 / 2}$

$$
\begin{aligned}
t_{c} & =\frac{2 L}{\sqrt{c^{2}-v^{2}}}=\frac{2 L}{c} \frac{1}{\sqrt{1-(v / c)^{2}}} \\
t_{u+d} & =\frac{2(100 \mathrm{mi})}{500 \mathrm{mi} / \mathrm{h}}\left(\frac{1}{1-(100)^{2} /(500)^{2}}\right)=0.4167 \mathrm{~h} \\
t_{c} & =\frac{2(100 \mathrm{mi})}{500 \mathrm{mi} / \mathrm{h}}\left(\frac{1}{\sqrt{0.96}}\right)=0.4082 \mathrm{~h}
\end{aligned}
$$

(b)

$$
\Delta t=t_{u+d}-t_{c}=0.0085 \mathrm{~h} \cong 0.009 \mathrm{~h} \text { or } 0.510 \mathrm{~min} \cong 0.5 \mathrm{~min}
$$

1-5 This is a case of dilation. $T=\gamma T^{\prime}$ in this problem with the proper time $T^{\prime}=T_{0}$

$$
T=\left[1-\left(\frac{v}{c}\right)^{2}\right]^{-1 / 2} T_{0} \Rightarrow \frac{v}{c}=\left[1-\left(\frac{T_{0}}{T}\right)^{2}\right]^{1 / 2}
$$

in this case $T=2 T_{0}, v=\left\{1-\left[\frac{L_{0} / 2}{L_{0}}\right]^{2}\right\}^{1 / 2}=\left[1-\left(\frac{1}{4}\right)\right]^{1 / 2}$ therefore $v=0.866 c$.
1-6 This is a case of length contraction. $L=\frac{L^{\prime}}{\gamma}$ in this problem the proper length $L^{\prime}=L_{0}$, $L=\left[1-\frac{v^{2}}{c^{2}}\right]^{-1 / 2} L_{0} \Rightarrow v=c\left[1-\left(\frac{L}{L_{0}}\right)^{2}\right]^{1 / 2} ;$ in this case $L=\frac{L_{0}}{2}, v=\left\{1-\left[\frac{L_{0} / 2}{L_{0}}\right]^{2}\right\}^{1 / 2}=\left[1-\left(\frac{1}{4}\right)\right]^{1 / 2}$ therefore $v=0.866 c$.

1-7 The problem is solved by using time dilation. This is also a case of $v \ll c$ so the binomial expansion is used $\Delta t=\gamma \Delta t^{\prime} \cong\left[1+\frac{v^{2}}{2 c^{2}}\right] \Delta t^{\prime}, \Delta t-\Delta t^{\prime}=\frac{v^{2} \Delta t^{\prime}}{2 c^{2}} ; v=\left[\frac{2 c^{2}\left(\Delta t-\Delta t^{\prime}\right)}{\Delta t^{\prime}}\right]^{1 / 2} ;$ $\Delta t=(24 \mathrm{~h} /$ day $)(3600 \mathrm{~s} / \mathrm{h})=86400 \mathrm{~s} ; \Delta t^{\prime}=\Delta t-1=86399 \mathrm{~s} ;$

$$
v=\left[\frac{2(86400 \mathrm{~s}-86399 \mathrm{~s})}{86399 \mathrm{~s}}\right]^{1 / 2}=0.0048 c=1.44 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

1-8 $\quad L=\frac{L^{\prime}}{\gamma}$

$$
\begin{aligned}
& \frac{1}{\gamma}=\frac{L}{L^{\prime}}=\left[1-\frac{v^{2}}{c^{2}}\right]^{1 / 2} \\
& v=c\left[1-\left(\frac{L}{L^{\prime}}\right)^{2}\right]^{1 / 2}=c\left[1-\left(\frac{75}{100}\right)^{2}\right]^{1 / 2}=0.661 c
\end{aligned}
$$

(a) $\quad \tau=\gamma \tau^{\prime}$ where $\beta=\frac{v}{c}$ and

$$
\gamma=^{\prime}\left(1-\beta^{2}\right)^{-1 / 2}=\tau^{\prime}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}=\left(2.6 \times 10^{-8} \mathrm{~s}\right)\left[1-(0.95)^{2}\right]^{-1 / 2}=8.33 \times 10^{-8} \mathrm{~s}
$$

(b) $\quad d=v \tau=(0.95)\left(3 \times 10^{8}\right)\left(8.33 \times 10^{8} \mathrm{~s}\right)=24 \mathrm{~m}$
(b) $\Delta t=\gamma \Delta t^{\prime}=\left[1-(0.9)^{2}\right]^{-1 / 2}\left(\frac{1}{70}\right) \min =0.0328 \mathrm{~min} /$ beat or the number of beats per minute $\approx 30.5 \approx 31$.
(a) Only the x-component of L_{0} contracts.

$$
\begin{aligned}
& L_{x^{\prime}}=L_{0} \cos \theta_{0} \Rightarrow L_{x}=L_{0} \cos \theta_{0} / \gamma \\
& L_{y^{\prime}}=L_{0} \sin \theta_{0} \Rightarrow L_{y}=L_{0} \sin \theta \\
& \begin{aligned}
L & =\sqrt{L_{x}^{2}+L_{y}^{2}}=\sqrt{L_{0}{ }^{2} \cos ^{2} \theta / \gamma^{2}+L_{0}^{2} \sin ^{2} \theta_{0}} \\
& =L_{0} \sqrt{\cos ^{2} \theta_{0}\left(1-\frac{v^{2}}{c^{2}}\right)+\sin ^{2} \theta_{0}}=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}} \cos ^{2} \theta_{0}}
\end{aligned}
\end{aligned}
$$

(b) As seen by the stationary observer, $\tan \theta=\frac{L_{y}}{L_{x}}=\frac{L_{0} \sin \theta_{0}}{L_{0} \cos \theta_{0} / \gamma}=\gamma \tan \theta_{0}$.

1-16 For an observer approaching a light source, $\lambda_{\mathrm{ob}}=\left[\frac{(1-v / c)^{1 / 2}}{(1+v / c)^{1 / 2}}\right] \lambda_{\text {source }}$. Setting $\beta=\frac{v}{c}$ and after some algebra we find,

$$
\begin{aligned}
& \beta=\frac{\lambda_{\text {source }}^{2}-\lambda_{\text {obs }}^{2}}{\lambda_{\text {source }}^{2}+\lambda_{\text {obs }}^{2}}=\frac{(650 \mathrm{~nm})^{2}-(550 \mathrm{~nm})^{2}}{(650 \mathrm{~nm})^{2}+(550 \mathrm{~nm})^{2}}=0.166 \\
& v=0.166 c=\left(4.98 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)(2.237 \mathrm{mi} / \mathrm{h})(\mathrm{m} / \mathrm{s})^{-1}=1.11 \times 10^{8} \mathrm{mi} / \mathrm{h}
\end{aligned}
$$

1-17 (a) Galaxy A is approaching and as a consequence it exhibits blue shifted radiation.
From Example 1.6, $\beta=\frac{v}{c}=\frac{\lambda_{\text {source }}^{2}-\lambda_{\text {obs }}^{2}}{\lambda_{\text {source }}^{2}+\lambda_{\text {obs }}^{2}}$ so that $\beta=\frac{(550 \mathrm{~nm})^{2}-(450 \mathrm{~nm})^{2}}{(550 \mathrm{~nm})^{2}+(450 \mathrm{~nm})^{2}}=0.198$.
Galaxy A is approaching at $v=0.198 c$.
(b) For a red shift, B is receding. $\beta=\frac{v}{c}=\frac{\lambda_{\text {source }}^{2}-\lambda_{\text {obs }}^{2}}{\lambda_{\text {source }}^{2}+\lambda_{\text {obs }}^{2}}$ so that $\beta=\frac{(700 \mathrm{~nm})^{2}-(550 \mathrm{~nm})^{2}}{(700 \mathrm{~nm})^{2}+(550 \mathrm{~nm})^{2}}=0.237$. Galaxy B is receding at $v=0.237 c$.
(a) Let f_{c} be the frequency as seen by the car. Thus, $f_{c}=f_{\text {source }} \sqrt{\frac{c+v}{c-v}}$ and, if f is the frequency of the reflected wave, $f=f_{c} \sqrt{\frac{c+v}{c-v}}$. Combining these equations gives $f=f_{\text {source }} \frac{(c+v)}{(c-v)}$.
(b) Using the above result, $f(c-v)=f_{\text {source }}(c+v)$, which gives

$$
\left(f-f_{\text {source }}\right)_{c}=\left(f+f_{\text {source }}\right) v \approx 2 f_{\text {source }} v
$$

The beat frequency is then $f_{\text {beat }}=f-f_{\text {source }}=\frac{2 f_{\text {source }} v}{c}=\frac{2 v}{\lambda}$.
(c) $f_{\text {beat }}=\frac{2(30.0 \mathrm{~m} / \mathrm{s})\left(10.0 \times 10^{9} \mathrm{~Hz}\right)}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=\frac{2(30.0 \mathrm{~m} / \mathrm{s})}{0.0300 \mathrm{~m}}=2000 \mathrm{~Hz}=2.00 \mathrm{kHz}$
$\lambda=\frac{c}{f_{\text {source }}}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{10.0 \times 10^{9} \mathrm{~Hz}}=3.00 \mathrm{~cm}$
(d) $v=\frac{f_{\text {beat }} \lambda}{2}$ so,
$\Delta v=\frac{\Delta f_{\text {beat }} \lambda}{2}=\frac{(5 \mathrm{~Hz})(0.0300 \mathrm{~m})}{2}=0.0750 \mathrm{~m} / \mathrm{s} \approx 0.2 \mathrm{mi} / \mathrm{h}$

