Lorentz Transformation Between Ref Frames

\[x' = \gamma (x - vt) \]
\[y' = y \]
\[z' = z \]
\[t' = \gamma \left(t - \frac{vx}{c^2} \right) \]

Inverse Lorentz Transformation

\[x = \gamma (x' + vt) \]
\[y = y' \]
\[z = z' \]
\[t = \gamma \left(t' + \frac{vx'}{c^2} \right) \]

As \(v \to 0 \), Galilean Transformation is recovered, as per requirement.

Notice: SPACE and TIME Coordinates mixed up !!!
Lorentz Transform for Pair of Events

\[\Delta x' = \gamma (\Delta x - v \Delta t) \]
\[\Delta t' = \gamma \left(\Delta t - \frac{v}{c^2} \Delta x \right) \]
\[\Delta x = \gamma (\Delta x' + v \Delta t') \]
\[\Delta t = \gamma \left(\Delta t' + \frac{v}{c^2} \Delta x' \right) \]

Can understand Simultaneity, Length contraction & Time dilation formulae from this

Time dilation: Bulb in S frame turned on at \(t_1 \) & off at \(t_2 \) : What \(\Delta t' \) did S’ measure?

- two events occur at same place in S frame => \(\Delta x = 0 \)
- \(\Delta t' = \gamma \Delta t \) (\(\Delta t \) = proper time)

Length Contraction: Ruler measured in S between \(x_1 \) & \(x_2 \) : What \(\Delta x' \) did S’ measure?

- two ends measured at same time in S’ frame => \(\Delta t' = 0 \)
- \(\Delta x = \gamma (\Delta x' + 0) \) => \(\Delta x' = \Delta x / \gamma \) (\(\Delta x \) = proper length)
Fitting a 5m pole in a 4m barnhouse

Student with pole runs with \(v = (3/5)c \)

Farmboy sees pole contraction factor

\[
\sqrt{1 - \left(\frac{3c}{5c}\right)^2} = 4/5
\]

Says pole just fits in the barn fully!

Student with pole runs with \(v = (3/5)c \)

Student sees barn contraction factor

\[
\sqrt{1 - \left(\frac{3c}{5c}\right)^2} = 4/5
\]

Says barn is only 3.2m long, too short to contain entire 5m pole!

Farmboy says “You can do it”

Student says “Dude, you are nuts”

Is there a contradiction? Is Relativity wrong?

Homework: You figure out who is right, if any and why.
Hint: Think in terms of observing three events.
Fitting a 5m pole in a 4m barnhouse?

\[V = \left(\frac{3}{5} \right) c \]

Answer: Simultaneity!

Event A: Arrival of right end of pole at left end of barn: \((t = 0, t' = 0)\) is reference

\[L'_0 = \text{proper length of pole in } S' \]

\[l_0 = \text{length of barn in } S \text{ frame} < L'_0 \]

In \(S \): length of pole \(L = L'_0 \sqrt{1 - (v/c)^2} \)

The times in two frames are related:

\[t'_B = \frac{l'_B}{v} = \frac{l_0}{v} \sqrt{1 - (v/c)^2} = t_{BC} \sqrt{1 - (v/c)^2} \]

\[t'_C = \frac{L'_0}{v} = \frac{l'_C}{v} \frac{1}{\sqrt{1 - (v/c)^2}} = \frac{t_{BC}}{\sqrt{1 - (v/c)^2}} \]

⇒ Time gap in \(S' \) by which events B and C fail to be simultaneous

A: Arrival of right end of pole at left end of barn
B: Arrival of left end of pole at left end of barn
C: Arrival of right end of pole at right end of barn

Let \(S = \text{Barn frame}, S' = \text{student frame} \)

Farmboy sees two events as simultaneous

2D student cannot agree

Fitting of the pole in barn is relative!
Farmboy Vs 2D Student

Pole and barn are in relative motion u such that
lorentz contracted length of pole =
Proper length of barn

In rest frame of pole,
Event B precedes C
Lorentz Velocity Transformation Rule

In \(S' \) frame, \(u_{x'} = \frac{x_2' - x_1'}{t_2' - t_1'} = \frac{dx}{dt} \)

\(\quad \frac{dx}{dt} = \gamma(dx - vdt), \quad dt' = \gamma(dt - \frac{v}{c^2}dx) \)

\(u_{x'} = \frac{dx - vdt}{dt} \), divide by \(dt' \)

\[u_{x'} = \gamma \left(\frac{u - \frac{v}{c}}{1 - \frac{vu}{c^2}} \right) \]

For \(v << c, \ u_{x'} = u_x - v \)

\((Galilean \ Trans. \ Restored)\)

S and \(S' \) are measuring ant’s speed \(u \) along \(x, y, z \) axes
Does Lorentz Transform “work”?

Two rockets travel in opposite directions

An observer on earth (S) measures speeds = 0.75c And 0.85c for A & B respectively

What does A measure as B’s speed?

Place an imaginary S’ frame on Rocket A ⇒ v = 0.75c relative to Earth Observer S

\[
\begin{align*}
 u'_x &= \frac{u_x - v}{\sqrt{1 - \frac{u_x v}{c^2}}} \\
 &= \frac{-0.850c - 0.750c}{\sqrt{1 - \frac{(-0.850c)(0.750c)}{c^2}}} \\
 &= \frac{-1.60c}{\sqrt{1 - \frac{1.5375c^2}{c^2}}} \\
 &= -0.977c
\end{align*}
\]

Consistent with Special Theory of Relativity
Velocity Transformation Perpendicular to S-S’ motion

\[dy' = dy, \quad dt' = \gamma (dt - \frac{v}{c^2} \, dx) \]

\[u'_y = \frac{dy'}{dt'} = \frac{dy}{\gamma (dt - \frac{v}{c^2} \, dx)} \]

divide by dt on RHS

\[u'_y = \frac{u_y}{\gamma (1 - \frac{v}{c^2} u_x)} \]

There is a change in velocity in the direction \(\perp \) to S-S' motion!

Similarly

Z component of Ant's velocity transforms as

\[u'_z = \frac{u_z}{\gamma (1 - \frac{v}{c^2} u_x)} \]
Inverse Lorentz Velocity Transformation

Inverse Velocity Transform:

\[u_x = \frac{u_x' + \nu}{1 + \frac{\nu u_x'}{c^2}} \]

\[u_y = \frac{u_y}{\gamma(1 + \frac{\nu u_x'}{c^2})} \]

\[u_z = \frac{u_z}{\gamma(1 + \frac{\nu u_x'}{c^2})} \]

As usual, replace \(V \Leftrightarrow -V \)
Example of Inverse velocity Transform

Biker moves with speed $= 0.8c$ past stationary observer

 Throws a ball forward with speed $= 0.7c$

What does stationary observer see as velocity of ball?

Place S’ frame on biker
Biker sees ball speed $u_{X'} = 0.7c$

Speed of ball relative to stationary observer
u_x ?

$u_x = \frac{u_x' + v}{1 + \frac{u_x'v}{c^2}} = \frac{0.70c + 0.80c}{(0.70c)(0.80c)} = 0.96c$
Hollywood Yarns!
Terminator: Can you be seen to be born before your mother?

A frame of Ref where sequence of events is REVERSED ?!!

\[\Delta t' = t_2' - t_1' = \gamma \left[\Delta t - \left(\frac{v \Delta x}{c^2} \right) \right] \]

Reversing sequence of events \(\Rightarrow \Delta t' < 0 \)
I Can’t ‘be seen to arrive in SF before I take off from SD

\[\Delta t' = t'_2 - t'_1 = \gamma \left[\Delta t - \left(\frac{v \Delta x}{c^2} \right) \right] \]

For what value of \(v \) can \(\Delta t' < 0 \)

\[\Delta t' < 0 \Rightarrow \Delta t < \frac{v \Delta x}{c^2} \Rightarrow 1 < \frac{v}{c^2 \Delta t} = \frac{v u}{c^2} \]

\[\Rightarrow \frac{v}{c} > \frac{c}{u} \Rightarrow v > c : \text{Not allowed} \]
Relativistic Momentum and Revised Newton’s Laws

Need to generalize the laws of Mechanics & Newton to confirm to Lorentz Transform and the Special theory of relativity: Example:

\[p = m \bar{u} \]

\[\begin{align*}
 v_1 &= 0, \\
 v_2 &= \frac{v - v_1}{\frac{v}{c}} - \frac{2v}{1 - \frac{v^2}{c^2}} \\
 v_1' &= \frac{v}{c^2} - \frac{v}{c} \\
 v_2' &= \frac{v}{c^2} + \frac{v}{c} \\
 p_{\text{before}} &= m v_1 + m v_2 \\
 p_{\text{after}} &= m v_1' + m v_2' \\
 p_{\text{before}} &= p_{\text{after}}
\end{align*} \]

Watching an Inelastic Collision between two putty balls.
Definition (without proof) of Relativistic Momentum

\[\vec{p} = \frac{m \vec{u}}{\sqrt{1 - (u/c)^2}} = \gamma m \vec{u} \]

With the new definition relativistic momentum is conserved in all frames of references: Do the exercise

New Concepts

Rest mass = mass of object measured
In a frame of ref. where object is at rest

\[\gamma = \frac{1}{\sqrt{1 - (u/c)^2}} \]

\(u \) is velocity of the object
NOT of a reference frame!
Nature of Relativistic Momentum

\[\vec{p} = \frac{m\vec{u}}{\sqrt{1 - (u/c)^2}} = \gamma m\vec{u} \]

With the new definition of Relativistic momentum, Momentum is conserved in all frames of references.