Physics 2D Lecture Slides Lecture 29: March 8th 2005

Vivek Sharma
UCSD Physics

The Hydrogen Atom In Its Full Quantum Mechanical Glory

Instead of writing Laplacian $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$,
write ∇^{2} for spherical polar coordinates:
$\nabla^{2}=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial^{2} \phi}$
Thus the T.I.S.Eq. for $\psi(x, y, z)=\psi(r, \theta, \phi)$ becomes
$\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi(\mathrm{r}, \theta, \phi)}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi(\mathrm{r}, \theta, \phi)}{\partial \theta}\right)+$ $\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi(\mathrm{r}, \theta, \phi)}{\partial^{2} \phi}+\frac{2 \mathrm{~m}}{\hbar^{2}}(\mathrm{E}-\mathrm{U}(\mathrm{r})) \psi(\mathrm{r}, \theta, \phi)=0$
with $U(r) \propto \frac{1}{r}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$

So What do we have after all the shuffling!

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \Phi}{d \phi^{2}}+\mathrm{m}_{l}^{2} \Phi=0 \ldots \ldots \ldots \ldots \ldots . . \ldots \\
& \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[l(l+1)-\frac{\mathrm{m}_{l}^{2}}{\sin ^{2} \theta}\right] \Theta(\theta)=0 \ldots . . \tag{2}\\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\left[\frac{2 \mathrm{~m}^{2}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)-\frac{l(l+1)}{r^{2}}\right] R(r)=0 \ldots . \tag{3}
\end{align*}
$$

These 3 "simple" diff. eqn describe the physics of the Hydrogen atom.

All we need to do now is guess the solutions of the diff. equations

Each of them, clearly, has a different functional form

And Now the Solutions of The S. Eqns for Hydrogen Atom

The Azimuthal Diff. Equation : $\frac{\mathrm{d}^{2} \Phi}{d \phi^{2}}+\mathrm{m}_{l}^{2} \Phi=0$

Solution : $\Phi(\phi)=\mathrm{A} \mathrm{e}^{i m_{l} \phi}$ but need to check "Good Wavefunction Condition" Wave Function must be Single Valued for all $\phi \Rightarrow \Phi(\phi)=\Phi(\phi+2 \pi)$

$\Rightarrow \Phi(\phi)=\mathrm{Ae}^{i m_{l} \phi}=\mathrm{A}^{i m_{l}(\phi+2 \pi)} \Rightarrow m_{l}=0, \pm 1, \pm 2, \pm 3 \ldots($ Magnetic Quantum \#)

The Polar Diff. Eq: $\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[l(l+1)-\frac{\mathrm{m}_{l}^{2}}{\sin ^{2} \theta}\right] \Theta(\theta)=0$

Solutions : go by the name of "Associated Legendre Functions" only exist when the integers l and m_{l} are related as follows $m_{l}=0, \pm 1, \pm 2, \pm 3 \ldots \pm l ; l=$ positive number
l : Orbital Quantum Number

Wavefunction Along Azimuthal Angle ϕ and Polar Angle θ

For $l=0, m_{l}=0 \Rightarrow \Theta(\theta)=\frac{1}{\sqrt{2}}$;

For $l=1, m_{l}=0, \pm 1 \Rightarrow$ Three Possibilities for the Orbital part of wavefunction
$\left[l=1, m_{l}=0\right] \Rightarrow \Theta(\theta)=\frac{\sqrt{6}}{2} \cos \theta \quad\left[l=1, m_{l}= \pm 1\right] \Rightarrow \Theta(\theta)=\frac{\sqrt{3}}{2} \sin \theta$
$\left[l=2, m_{l}=0\right] \Rightarrow \Theta(\theta)=\frac{\sqrt{10}}{4}\left(3 \cos ^{2} \theta-1\right)$
....and so on and so forth (see book for more Functions)

Radial Differential Equations and Its Solutions

The Radial Diff. Eqn: $\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\left[\frac{2 \mathrm{~m} r^{2}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}}{\mathrm{r}}\right)-\frac{l(l+1)}{r^{2}}\right] R(r)=0$
Solutions : Associated Laguerre Functions R(r), Solutions exist only if:

1. $\mathrm{E}>0$ or has negtive values given by

$$
\mathrm{E}=-\frac{\mathrm{ke}^{2}}{2 \mathrm{a}_{0}}\left(\frac{1}{n^{2}}\right) ; \quad \text { with } a_{0}=\frac{\hbar^{2}}{m k e^{2}}=\text { Bohr Radius }
$$

2. And when $\mathrm{n}=$ integer such that $l=0,1,2,3,4, \ldots \ldots . .(n-1)$ $\mathrm{n}=$ principal Quantum \# or the "big daddy" quantum \#

The Hydrogen Wavefunction: $\psi(r, \theta, \phi)$ and $\Psi(r, \theta, \phi, t)$
To Summarize : The hydrogen atom is brought to you by the letters:

$$
\begin{aligned}
& \mathrm{n}=1,2,3,4,5, \ldots \infty \\
& l=0,1,2,3,4 \ldots .(n-1) \\
& \mathrm{m}_{l}=0, \pm 1, \pm 2, \pm 3, \ldots \pm l
\end{aligned}
$$

Quantum \# appear only in Trapped systems

The Spatial part of the Hydrogen Atom Wave Function is:

$$
\psi(r, \theta, \phi)=R_{n l}(r) \cdot \Theta_{l m_{l}}(\theta) \quad . \Phi_{\mathrm{m}_{1}}(\phi)=R_{n l} \mathrm{Y}_{l}^{m_{l}}
$$

$\mathrm{Y}_{l}^{m_{l}}$ are known as Spherical Harmonics. They define the angular structure in the Hydrogen-like atoms.

The Full wavefunction is $\Psi(r, \theta, \varphi, t)=\psi(r, \theta, \phi) e^{-\frac{i E}{\hbar} t}$

Facts About Ground State of H Atom

$n=1, l=0, m_{l}=0 \Rightarrow R(r)=\frac{2}{\mathrm{a}_{0}^{3 / 2}} \mathrm{e}^{-r / a} ; \quad \Theta(\theta)=\frac{1}{\sqrt{2 \pi}} ; \quad \Phi(\phi)=\frac{1}{\sqrt{2}}$ $\Psi_{100}(r, \theta, \phi)=\frac{1}{a_{0} \sqrt{\pi}} \mathrm{e}^{-r / a} \ldots \ldots .$. look at it carefully

1. Spherically symmetric \Rightarrow no θ, ϕ dependence (structure)
2. Probability Per Unit Volume : $\left|\Psi_{100}(r, \theta, \phi)\right|^{2}=\frac{1}{\pi a_{0}^{3}} e^{-\frac{2 r}{a}}$

Likelihood of finding the electron is same at all θ, ϕ and depends only on the
radial seperation (r) between electron \& the nucleus.
3 Energy of Ground State $=-\frac{\mathrm{ke}^{2}}{2 \mathrm{a}_{0}}=-13.6 \mathrm{eV}$
Overall The Ground state wavefunction of the hydrogen atom is quite boring
Not much chemistry or Biology could develop if there was only the ground state of the Hydrogen Atom!

We need structure, we need variety, we need some curves!

Interpreting Orbital Quantum Number (I)

Radial part of S.Eqn: $\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left[\frac{2 \mathrm{~m}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)-\frac{l(l+1)}{r^{2}}\right] R(r)=0$
For H Atom: $\mathrm{E}=\mathrm{K}+\mathrm{U}=\mathrm{K}_{\text {RADIAL }}+\mathrm{K}_{\text {orbitaL }}-\frac{k e^{2}}{r}$; substitute this in E
$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 \mathrm{~m}}{\hbar^{2}}\left[\mathrm{~K}_{\text {RADIAL }}+\mathrm{K}_{\text {ORBITAL }}-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{l(l+1)}{r^{2}}\right] R(r)=0$
Examine the equation, if we set $\mathrm{K}_{\text {ORBITAL }}=\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{l(l+1)}{r^{2}}$ then

what remains is a differential equation in r
$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 \mathrm{~m}}{\hbar^{2}}\left[\mathrm{~K}_{\text {RADIAL }}\right] R(r)=0$ which depends only on radius r of orbit
Further, we also know that $\mathrm{K}_{\text {orBITAL }}=\frac{1}{2} m v_{\text {orbit }}^{2} ; \quad \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}} ; \quad|\mathrm{L}|=\mathrm{mV}_{\text {orb }} \mathrm{r} \Rightarrow \mathrm{K}_{\text {ORBTIAL }}=\frac{L^{2}}{2 m r^{2}}$
Putting it all togather: $\mathrm{K}_{\text {ORBiTAL }}=\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{l(l+1)}{r^{2}}=\frac{L^{2}}{2 m r^{2}} \Rightarrow$ magnitude of Ang. Mom $|L|=\sqrt{l(l+1)} \hbar$
Since $l=$ positive integer $=0,1,2,3 \ldots(\mathrm{n}-1) \Rightarrow$ angular momentum $|L|=\sqrt{l(l+1)} \hbar=$ discrete values

$$
|L|=\sqrt{l(l+1)} \hbar: \text { QUANTIZATION OF Electron's Angular Momentum }
$$

Magnetic Quantum Number m,
$\vec{L}=\vec{r} \times \vec{p}$ (Right Hand Rule)
Classically, direction \& Magnitude of $\overrightarrow{\mathrm{L}}$ always well defined
QM: Can/Does $\overrightarrow{\mathrm{L}}$ have a definite direction? Proof by Negation:
Suppose $\overrightarrow{\mathrm{L}}$ was precisely known/defined ($\overrightarrow{\mathrm{L}} \| \hat{\mathrm{z}})$
Since $\vec{L}=\vec{r} \times \vec{p} \Rightarrow$ Electron MUST be in x-y orbit plane
$\Rightarrow \Delta \mathrm{z}=0 ; \Delta \mathrm{p}_{z} \Delta z \sim \hbar \Rightarrow \Delta \mathrm{p}_{\mathrm{z}} \sim \infty ; E=\frac{p^{2}}{2 m} \sim \infty!!!$
So, in Hydrogen atom, $\overrightarrow{\mathrm{L}}$ can not have precise measurable value
Uncertainty Principle \& Angular Momentum : $\Delta \mathrm{L}_{z} \Delta \phi \sim \hbar$

In Hydrogen atom, $\overrightarrow{\mathrm{L}}$ can not have precise measurable value
Arbitararily picking Z axis as a reference direction:
$\overrightarrow{\mathrm{L}}$ vector spins around Z axis (precesses).
The Z component of $\overrightarrow{\mathrm{L}}:\left|\mathrm{L}_{\mathrm{Z}}\right|=m_{l} \hbar ; \quad m_{l}= \pm 1, \pm 2, \pm 3 \ldots \pm l$

Note: since $\left|\mathrm{L}_{\mathrm{Z}}\right|<|L|$ (always)
since $m_{l} \hbar<\sqrt{l(l+1)} \hbar$ It can never be that $\left|\mathrm{L}_{\mathrm{Z}}\right|=m_{l} \hbar=\sqrt{l(l+1)} \hbar$
(breaks Uncertainty Principle)

So......the Electron's dance has begun !

Where is it likely to be ? \rightarrow Radial Probability Densities
$\Psi(r, \theta, \phi)=R_{n l}(r) \cdot \Theta_{l m_{l}}(\theta) \quad \Phi_{\mathrm{m}_{1}}(\phi)=R_{n l} \mathrm{Y}_{l}^{m_{l}}$
Probability Density Function in 3D:
$\mathrm{P}(\mathrm{r}, \theta, \phi)=\Psi^{*} \Psi=|\Psi(r, \theta, \phi)|^{2}=\left|R_{n \mid}\right|^{2} \cdot\left|\mathrm{Y}_{l}^{m_{l}}\right|^{2}$
Note: 3D Volume element $\mathrm{dV}=\mathrm{r}^{2} \cdot \sin \theta \cdot d r \cdot d \theta \cdot d \phi$
Prob. of finding particle in a tiny volume $d V$ is
P.dV $=\left|R_{m l}\right|^{2} \cdot\left|\mathrm{Y}_{l}^{m_{l}}\right|^{2} \cdot \mathrm{r}^{2} \cdot \sin \theta \cdot d r \cdot d \theta \cdot d \phi$

The Radial part of Prob. distribution: $\mathrm{P}(\mathrm{r}) \mathrm{dr}$

$\mathrm{P}(\mathrm{r}) \mathrm{dr}=\left|R_{n l}\right|^{2} \cdot r^{2} d r \int_{0}^{\pi}\left|\Theta_{l m_{l}}(\theta)\right|^{2} d \theta \int_{0}^{2 \pi}\left|\Phi_{\mathrm{m}_{1}}(\phi)\right|^{2} d \phi$
When $\Theta_{l m_{\mid}}(\theta) \& \Phi_{\mathrm{m}_{1}}(\phi)$ are auto-normalized then
$\mathrm{P}(\mathrm{r}) \mathrm{dr}=\left|R_{n \mid}\right|^{2} \cdot r^{2} d r$; in other words $\mathrm{P}(\mathrm{r})=\mathrm{r}^{2}\left|R_{n \mid}\right|^{2}$
Normalization Condition: $1=\int_{0}^{\infty} \mathrm{r}^{2}\left|\mathrm{R}_{\mathrm{nl}}\right|^{2} d r$
Expectation Values $<\mathrm{f}(\mathrm{r})>=\int \mathrm{f}(\mathrm{r}) \cdot \mathrm{P}(\mathrm{r}) \mathrm{dr}$

Ground State: Radial Probability Density

$P(r) d r=|\psi(r)|^{2} .4 \pi r^{2} d r$
$\Rightarrow P(r) d r=\frac{4}{a_{0}^{3}} r^{2} e^{-2 \frac{r}{a_{0}}}$
Probability of finding Electron for $\mathrm{r}>\mathrm{a}_{0}$
$P_{r>a_{0}}=\int_{a}^{\infty} \frac{4}{a_{0}^{3}} r^{2} e^{-2 \frac{r}{a_{0}}} d r$
To solve, employ change of variable
Define $\mathrm{z}=\left[\frac{2 \mathrm{r}}{\mathrm{a}_{0}}\right]$; change limits of integration $P_{r>a_{0}}=\frac{1}{2} \int_{2}^{\infty} z^{2} e^{-z} d z \quad$ (such integrals called Error. Fn)

$$
=-\left.\frac{1}{2}\left[z^{2}+2 z+2\right] e^{-z}\right|_{2} ^{\infty}=5 e^{2}=0.667 \Rightarrow 66.7 \%!!
$$

Most Probable \& Average Distance of Electron from Nucleus

Most Probable Distance

In the ground state $\left(n=1, l=0, m_{l}=0\right) \quad P(r) d r=\frac{4}{a_{0}^{3}} r^{2} e^{-2 \frac{r}{a_{0}}}$
Most probable distance r from Nucleus \Rightarrow What value of r is $\mathrm{P}(\mathrm{r}) \max$?
$\Rightarrow \frac{\mathrm{dP}}{\mathrm{dr}}=0 \Rightarrow \frac{4}{a_{0}^{3}} \cdot \frac{d}{d r}\left[r^{2} e^{-2 \frac{r}{a_{0}}}\right]=0 \Rightarrow\left[\frac{-2 r^{2}}{a_{0}}+2 r\right] e^{-2 \frac{r}{a_{0}}}=0$
$\Rightarrow \frac{2 r^{2}}{a_{0}}+2 r=0 \Rightarrow r=0$ or $r=a_{0} \ldots$ which solution is correct?
(see past quiz) : Can the electron BE at the center of Nucleus $(\mathrm{r}=0)$?
$P(r=0)=\frac{4}{a_{0}^{3}} 0^{2} e^{-2 \frac{0}{a_{0}}}=0!\Rightarrow$ Most Probable distance $r=a_{0}$ (Bohr guessed right)

What about the AVERAGE location $<\mathrm{r}>$ of the electron in Ground state?
$<\mathrm{r}>=\int_{r=0}^{\infty} \mathrm{rP}(\mathrm{r}) \mathrm{dr}=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r r^{2} e^{-2 \frac{r}{a_{0}}} d r \quad \ldots$ change of variable $\mathrm{z}=\frac{2 \mathrm{r}}{\mathrm{a}_{0}}$
$\Rightarrow\langle r\rangle=\frac{a_{0}}{4} \int_{z=0}^{\infty} z^{3} e^{-z} d z \ldots \ldots .$. Use general form $\int_{0}^{\infty} z^{\mathrm{n}} e^{-z} d z=n!=n(n-1)(n-2) \ldots(1)$
$\Rightarrow \quad<r\rangle=\frac{a_{0}}{4} 3!=\frac{3 a_{0}}{2} \neq a_{0}!$ Average \& most likely distance is not same. Why?

Asnwer is in the form of the radial Prob. Density: Not symmetric

Normalized Spherical Harmonics \& Structure in H Atom

TABLE 7-1 Spherical harmonics		
$l=0$	$m=0$	$Y_{00}=\sqrt{\frac{1}{4 \pi}}$
$l=1$	$m=1$	$Y_{11}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi}$
$l=2$	$m=0$	$Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta$
	$m=-1$	$Y_{1-1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi}$
	$m=2$	$Y_{22}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{2 i \phi}$
	$m=1$	$Y_{21}=-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi}$
	$m=0$	$Y_{20}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)$
	$m=-1$	$Y_{2-1}=\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{-i \phi}$
	$m=-2$	$Y_{2-2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{-2 i \phi}$

Excited States $(n>1)$ of Hydrogen Atom : Birth of Chemistry !

Excited States ($\mathrm{n}>1$) of Hydrogen Atom : Birth of Chemistry !
Remember Principle of Linear Superposition
for the TISE which is basically a simple differential equation:
$-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+U \psi=E \psi$

Principle of Linear Superposition \Rightarrow If ψ_{1} and ψ_{2} are sol. of TISE then a "designer" wavefunction made of linear sum
$\psi^{\prime}=a \psi_{1}+b \psi_{2}$ is also a sol. of the diff. equation!
To check this, just substitute ψ^{\prime} in place of ψ
\& convince yourself that

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{\prime}+U \psi^{\prime}=E \psi^{\prime}
$$

The diversity in Chemistry and Biology DEPENDS
on this superposition rule

Designer Wave Functions: Solutions of S. Eq !

Linear Superposition Principle means allows me to "cook up" wavefunctions $\psi_{2 \mathrm{p}_{\mathrm{x}}}=\frac{1}{\sqrt{2}}\left[\psi_{211}+\psi_{21-1}\right] \ldots .$. has electron "cloud" oriented along x axis $\psi_{2 \mathrm{p}_{\mathrm{y}}}=\frac{1}{\sqrt{2}}\left[\psi_{211}-\psi_{21-1}\right] \ldots .$. has electron "cloud" oriented along y axis
So from 4 solutions $\psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1} \rightarrow 2 s, 2 p_{x}, 2 p_{y}, 2 p_{z}$

Similarly for $\mathrm{n}=3$ states ...and so on ...can get very complicated structure in $\theta \& \phi \ldots . .$. which I can then mix \& match to make electrons "most likely" to be where I want them to be !

Designer Wave Functions: Solutions of S. Eq !

What's So "Magnetic" ?

Precessing electron \rightarrow Current in loop \rightarrow Magnetic Dipole moment μ

The electron's motion \rightarrow hydrogen atom is a dipole magnet

Quantized Magnetic Moment

Why all this? Need to find a way to break the Energy Degeneracy \& get electron in each $\left(n, l, m_{l}\right)$ state to identify itself, so we can "talk" to it and make it do our bidding:
" Walk this way, talk this way!"
"Lifting" Degeneracy : Magnetic Moment in External B Field

Apply an External $\overrightarrow{\mathrm{B}}$ field on a Hydrogen atom (viewed as a dipole)
Consider $\vec{B} \| \vec{Z}$ axis (could be any other direction too)
The dipole moment of the Hydrogen atom (due to electron orbit)
experiences a Torque $\vec{\tau}=\vec{\mu} \times \vec{B}$ which does work to align $\vec{\mu} \| \vec{B}$
but this can not be (same Uncertainty principle argument)
\Rightarrow So, Instead, $\vec{\mu}$ precesses (dances) around $\vec{B} .$. like a spinning top The Azimuthal angle ϕ changes with time : calculate frequency Look at Geometry: |projection along $\mathrm{x}-\mathrm{y}$ plane : $|\mathrm{dL}|=\mathrm{L} \sin \theta \mathrm{d} \phi$ $\Rightarrow d \phi=\frac{|\mathrm{dL}|}{\mathrm{Lsin} \theta}$; Change in Ang Mom. $|d L|=|\tau| d t=\left|\frac{q}{2 m} L B \sin \theta\right| d t$
$\Rightarrow \omega_{\mathrm{L}}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{1}{\mathrm{~L} \sin \theta} \frac{\mathrm{dL}}{\mathrm{dt}}=\frac{1}{\mathrm{Lsin} \theta} \frac{q}{2 m} L B \sin \theta=\frac{q B}{2 m_{e}}$ Larmor Freq
ω_{L} depends on B , the applied external magnetic field
"Lifting" Degeneracy : Magnetic Moment in External B Field

WORK done to reorient $\vec{\mu}$ against \vec{B} field: $\mathrm{dW}=\tau \mathrm{d} \theta=-\mu \mathrm{B} \sin \theta \mathrm{d} \theta$ $d W=d(\mu \mathrm{~B} \cos \theta)$: This work is stored as orientational Pot. Energy U $d W=-d U$
Define Magnetic Potential Energy $\mathrm{U}=-\vec{\mu} \cdot \vec{B}=-\mu \cos \theta \cdot B=-\mu_{z} B$ Change in Potential Energy $\mathrm{U}=\frac{\mathrm{e} \hbar}{2 \mathrm{~m}_{\mathrm{e}}} m_{l} B=\hbar \omega_{L} m_{l}$

Zeeman Effect in Hydrogen Atom
In presence of External B Field, Total energy of H atom changes to

$$
\mathrm{E}=\mathrm{E}_{0}+\hbar \omega_{L} m_{l}
$$

So the Ext. B field can break the E degeneracy "organically" inherent in the H atom. The Energy now depends not just on n but also m_{l}

