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Measurement Expectation: Statistics Lesson

* Ensemble & probable outcome of a single measurement or the
average outcome of a large # of measurements
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For a general Fn (x) Sharpness of a distribution:
i n.f(x,) J. 1//* (x) £ () (x)dx = scatter around the average
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Table 5.2 Common Observables and
Associated Operators

Associated
Observable Symbol Operator
position X X
h oo
momentum p . —
: 1 0x
potential energy U U(x)
h2 92
kineti K iy e s
inetic energy o 922
h2 92
hamiltoni H ———+ U
amiltonian 9 92 (x)
, 4 0
total energy E th Py
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Particle in the Box, n=1, find <x> & Ax ?

v (x)= % sin (Zx]

<x>—_[\/§sin Ex x\/zsin Ex dx
J\L L L L

= <x>:i2f0 sin’@ , use sin’0 = l(l —c0s20)
Lz~ 2

Vi

V2iL

2 T T 0
=—J‘xsin2 —Xx {Ix , change variable 6=| —x
L3 L L 2/L

L X
o«
0 L X

= <x>= ZLZ {J.Qde - '[9 cos20d9} use J.udv:uv-J.vdu
4 0 0
= <x>= L7 [7;]22 (same result as from graphing v’ (x))
e

L 2 2
L L
Similarly <x?>=[x?sin®(% x)dx = ——
Y l =50
2 2 2
and AX=y/<x’ >—<x>’ = ];—L—z—i =0.18L
3 2z 4

AX=20% of L, Particle not sharply confined in Box




The Case of a Rusty “Twisted Pair” of Naked Wires
& How Quantum Mechanics Saved ECE Majors !

Oxide layer

\

AA

Wire #1 Wire #2

Twisted pair of Cu Wire (metal) in virgin form A
Does not stay that way for long in the atmosphere

*Gets oxidized in dry air quickly Cu »>Cu,O

*In wet air Cu = Cu(OH), (the green stuff on wires) ( ((
Oxides or Hydride are non-conducting ..so no current can flow
across the junction between two metal wires
No current means no circuits = no EE, no ECE !!
All ECE majors must now switch to Chemistry instead

& play with benzene !!! Bad news !

Potential Barrier

Transmitted o

X >

Consider George as a “free Particle/Wave” with Energy E incident from Left
Free particle are under no Force; have wavefunctions like

Y= A ei(kx-wt) or B ei(-kx-wt)




Tunneling Through A Potential Barrier

Region III

Prob ‘7

Beam Of Particles With E < U Incident On Barrier From Left
Region 111

U

Incident Beam - A - F
Reflected Beam _ B Transmitted Beam
X

0 L
Description Of WaveFunctions in Various regions: Simple Ones first

In Region T: ¥, (x,t) = 4¢'* ™ + Be' """ = incident + reflected Waves

272
withE=hto=hk
2m

_ B
AP

In Region ITl: ¥, (x,£) = Fe'™™™ + Ge' ™) = transmitted

define Reflection Coefficient : = frac of incident wave intensity reflected back

Note : Ge' ™" corresponds to wave incident from right !
This piece does not exist in the scattering picture we are thinking of now (G=0)
_ JEP

AP

Unitarity Condition = R+ T=1 (particle is either reflected or transmitted)

So W\, (x,1) = Fe'™* represents transmitted beam. Define




Wave Function Across The Potential Barrier

(incident)

A ik (transmitted)

_>F8+M

reflected)
Be~ ikx

Continuity Conditions Across Barrier
At x =0, continuity of y(x) =
A+B=C+D (1)

At x =0, continuity of % =

X
ikA—ikB=o0C—aD (2) oo g (transmilted)
Similarly at x=L continuity of y(x) = otecet) __ [ = =
Ce™ + De™™ = Fe™ 3) :

at x=L, continuity of @ =
x

(aC)e ™+ (aD)e™ =ikFe™ (4)
Four equations & four unknowns
Cant determine A,B,C,D but if you
Divide thruout by A in all 4 equations :

= ratio of amplitudes — relations for R & T
That's what we need any way




Potential Barrier when E < U

Above equation holds only for E <U
For E>U, a=imaginary#
ﬂ, Sinh(oL) becomes oscillatory
| § e N S A This leads to an Oscillatory T(E) and

I | I

¢ 4 : X Transmission resonances occur where
General/Solutions for R & T:

| |

| |

1 I

Py
:

! For some specific energy ONLY, T(E) =1
| At other values of E, some particles are

]

) reflected back ..even though E>U !!

That’s the Wave nature of the
Quantum particle

Ceparated in Coppertino

Oxide layer

Wire #1 Wire #2

2 2m(U-E J2mE
T(E) = 1+l v sinh’ (L) ‘F\/ m; ),k= ;n
4 EU-E)




Oxide layer
A\

Wire #1 Wire #2

1 mA current =I= = N=6.25x10" electrons

Q=Ng,
t

N =# of electrons that escape to the adjacent wire (past oxide layer)
N, = N.T'=(6.25%10" elgctrans))(; Oxide thickness makes all the difference !

For L=10 A’ T=0.657x10" = N, =4.11x10 = [1, = 65.7 pA|1! That’s why from time-to-time one needs to

Scrape off the green stuff off the naked wires

Current Measured on the first wire is sum of incident+reflected currents
and current measured on "adjacent" wire is the L

QM in 3 Dimensions

Learn to extend S. Eq and its - -

solutions from “toy” examples o2 FEnergy

in 1-Dimension (x) — three ‘ % E,

orthogonal dimensions (r= el 16 E,

X.Y,2) o e
P =ix ;V + kz L 0 L f

Then transform the systems Position

— Particle in 1D rigid box - 3D
rigid box

— 1D Harmonic Oscillator > 3D
Harmonic Oscillator

, 4
» Keep an eye on the number 7

of different integers needed
to specify system 1> 3

(corresponding to 3 g
available degrees of freedom >
X,Y,Z) Yy




Quantum Mechanics In 3D: Particle in 3D Box

AZ

- U0 for 0<xy.z,<L)|

Ask same questions:

» Location of particle in 3d Box
*  Momentum
» Kinetic Energy, Total Energy

» Expectation values in 3D

%y

y=0

y=L To find the Wavefunction and various

expectation values, we must first set up

the appropriate TDSE & TISE

The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates

Time Dependent Schrodinger Eqn:

2
vy 20+ UG P = in 25D ap
2m ot
2 2 2
pod 2T
4, ox° dy° oz

h2 h2 a2 h2 82 hZ 82
%) S __VZ =| - —_ —_ = K
& _ ’ "om [ 2m ox* }{ 2m dy’ j+[ 2m azzj K]

; = K] o+ K] o+ K]

X

so [H]¥(x,t)=[E]¥(x,t) is still the Energy Conservation Eq

Stationary states are those for which all probabilities are constant in time

and are given by the solution of the TDSE in seperable form:
Y(x,y,2,t) = P(7,t) =y (Pe™

This statement is simply an extension of what we derived in case of 1D

time-independent potential




Particle in 3D Rigid Box : Separation of Orthogonal Spatial (x,y,z) Variables

2

TISE in 3D: - c
2m

X,y,z independent of each other , write y(x, y,z) =y, (xX)y, (Vv (2)

Vi (x,y,2)+U(x,y, 2y (x,y,2) = Ey(x, y,2)

and substitute in the master TISE, after dividing thruout byy =y, (x)y, (»)y,(2)
and noting that U(r)=0 for (0<x,y,z,<L) =

2 2 2 2 2 5
1 dy(x) 4 r_1 8y/2(y)]+[_h ! a%(Z)J:E:Const

2my(x) ' || 2my,(n) o 2my,(z) o2

This can only be true if each term is constant for all X,y,z =

1 o'y, (x) 9w, (y) n* 9y, (2)
_ = E ol — 2 :E 0 3 :E
2m axz ly/] (X) P 2m ayz 2V/2 (y) > 2m azz 3W3 (Z)

With |E1 + E, + E, = E=Constant | (Total Energy of 3D system)

Each term looks like particle in 1D box (just a different dimension)

So wavefunctions must be like |y, (x) < sin kx| Jy, () < sin k,y||y; (2) o< sin k2|

Particle in 3D Rigid Box : Separation of Orthogonal Variables

5

Continuity Conditions for y, and its first spatial derivatives =

Leads to usual Quantization of Linear Momentum ﬁ=hE ..... in 3D

h h h
pxz(Tjnl ; py:(T]nz ; pzz(Tjn3 (n,,n,,n, =1,2,3,..00)

Note: by usual Uncertainty Principle argument neither of n,,n,,n, =0! (why?)

Wavefunctions are like |l//1 (x) o< sin le| ,|l//2 () e sink,y

Y, (2) o< sinkz|

n’h’

. 1 )
Particle Energy E = K+U =K +0 = E(pi +p,+ p)= M(nl2 +n +n])

Energy is again quantized and brought to you by integers n,,n,,n, (independent)

and y(r)=Asinkxsink,ysink;z (A = Overall Normalization Constant)

B E

Y(T,t)=y (7) e_i;’ =|4 [sinkxsink,ysink,z] e_i?




Particle in 3D Box :\Wave function Normalization Condition

8E
1—t

12 ;
YEt)=y(r)e " =|A4 [sinkxsink,ysinkz]e "

.E
=i

g
¥ (Et=y () e" =|A[sinkxsink,ysink,z]e”
Y (E)W(T,t)=A" [sin” kxsin® k,ysin® k,z]
Normalization Condition : 1 = JﬂP(r)dx dydz =

X,y,Z
L L L
L L L
1=4> |sin’kxdx |sin’kyd sin’ k,z dz =4 \/: — —
XJ.O l ;J‘o 2y y ZIO } 2 2 2
3 3

E

= A= [%T and |\ (1,t)= [%T [sinkxsink,ysink,z] e_igt

Particle in 3D Box : Energy Spectrum & Degeneracy

222
h 2 2 2.
n;,n,,n; :—Zlan (nl ‘|‘I’l2 +l’13 ), l'li =S 1’ 2’3‘_.00, n[ #* 0
3z’h?
Ground State Energy E,,;, = D
: _ 61’ h®
Next level = 3 Excited states E,;,=E,,, =E,,, = Sy

Different configurations of y (r)=y (X,y,z) have same energy = degeneracy

! V4 n? Degeneracy
4E, 12 None
z=L
LBy 11 3
%; 3E, 9 3
L. ¥
y 2E, 6 3
X:
E, 3 None
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