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Physics 2D Lecture  Slides
Lecture 26: March 2nd 2005

Vivek Sharma
UCSD Physics

Measurement Expectation: Statistics Lesson
• Ensemble & probable outcome of a single measurement or the

average outcome of a large # of measurements
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Particle in the Box, n=1, find <x> &  Δx ?
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The Case of a Rusty “Twisted Pair” of Naked Wires
& How Quantum Mechanics Saved ECE Majors !

• Twisted pair of Cu Wire (metal) in virgin form
• Does not stay that way for long in the atmosphere

•Gets oxidized in dry air quickly Cu Cu2O
•In wet air Cu  Cu(OH)2 (the green stuff on wires)

• Oxides or Hydride are non-conducting ..so no current can flow  
      across the junction between two metal wires
• No current means no circuits  no EE, no ECE !!
• All ECE majors must now switch to Chemistry instead  

     & play with benzene !!! Bad news !  

Oxide layer

Wire #1 Wire #2

Potential Barrier

U

E<U
Transmitted? 

             Description of Potential
U = 0      x <  0                     (Region I ) 
U = U     0 < x < L                (Region II) 
U = 0      x > L                       (Region III)

Consider George as a “free Particle/Wave” with Energy E  incident from Left
Free particle are under no Force; have wavefunctions like  

                                     Ψ= A ei(kx-wt) or B ei(-kx-wt) 

x
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Tunneling Through A Potential Barrier

•Classical & Quantum Pictures compared: When E>U & when E<U
•Classically , an particle or a beam of particles incident from left
encounters barrier:

•when E > U  Particle just goes over the barrier (gets transmitted )
•When E<U  particle is stuck in region I, gets entirely reflected,
no transmission (T)

•What happens in a Quantum Mechanical barrier ? No region is
inaccessible for particle since the potential is (sometimes small) but
finite

U

E<U  Prob ?
Region I

II

Region III

Beam Of Particles  With E < U Incident On Barrier From Left

AIncident Beam

BReflected Beam 
F

Transmitted Beam

U

x

Region I II Region III
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Description Of WaveFunctions in Various regions: Simple Ones first

incident + reflected Waves

                                    with E  
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Wave Function Across The Potential Barrier
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Potential Barrier when E < U

1
2

2

Depends on barrier Height U, barrier Width L and particle 

1
T(E) = 1+ sinh ( )

4 ( )

Expression for Transmissi

Energy E

            ;   

and       R(E)=1- T(E)..

on Coeff T=T(E) : 

2 ( )U E
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!!

"
# $% &
' () *"+ ,-

"

.
=

!

.......what's not transmitted is reflected

Above equation holds only for E < U
For E>U, α=imaginary# 

   Sinh(αL) becomes oscillatory
This leads to an Oscillatory T(E) and 
Transmission resonances occur where

For some specific energy ONLY, T(E) =1
At other values of E, some particles are 

reflected back ..even though E>U !!

That’s the Wave nature of the 
Quantum particle  

General Solutions for R & T: 

Ceparated in Coppertino

Q: 2 Cu wires are seperated by insulating Oxide layer. Modeling the

Solved Example 6.1 (...that I made such a big deal about yesterday)

 Oxide

layer as a square barrier of height U=10.0eV, estimate the transmission coeff

for an incident beam of electrons of E=7.0 eV when the layer thickness is 

(a) 5.0 nm (b) 1.0nm 

Q: If a 1.0 mA current in one of the intwined wires is incident on Oxide layer, how much of

this current passes thru the Oxide layer on to the adjacent wire if the layer thickness is 1.0nm?

What becomes of the remaining current? 
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Oxide layer

Wire #1 Wire #2
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T ;  

For L=10
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 A, 

 layer)

N . (6.25 10 )

N 4.11 10 65.7T=0.657 1 !!

Cur en
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t Measured on the first wire is sum of incident+reflected currents

and current measured on "adjacent" wire is the I  

Oxide layer

Wire #1 Wire #2

Oxide thickness makes all the difference !
That’s why from time-to-time one needs to
Scrape off the green stuff off the naked wires

• Learn to extend S. Eq and its
solutions from “toy” examples
in 1-Dimension (x) → three
orthogonal dimensions (r ≡
x,y,z)

• Then transform the systems
– Particle in 1D rigid box  3D

rigid box
– 1D Harmonic Oscillator  3D

Harmonic Oscillator
• Keep an eye on the number

of different integers needed
to specify system 1 3
(corresponding to 3
available degrees of freedom
x,y,z)

QM in 3 Dimensions

y
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x

ˆˆ ˆr ix jy kz= + +
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Quantum Mechanics In 3D: Particle in 3D Box
Extension of a Particle In a Box with rigid walls
         1D →  3D
⇒    Box with Rigid Walls (U=∞) in 
        X,Y,Z dimensions 

y
y=0

y=L

z=L

z

x

Ask same questions:
• Location of particle in 3d Box
• Momentum 
• Kinetic Energy, Total Energy
• Expectation values in 3D

To find the Wavefunction and various
expectation values, we must first set up
the appropriate TDSE & TISE

U(r)=0 for (0<x,y,z,<L)

The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates
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Particle in 3D Rigid Box : Separation of Orthogonal Spatial (x,y,z) Variables
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Particle in 3D Rigid Box : Separation of Orthogonal Variables
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Particle in 3D Box :Wave function Normalization Condition
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Particle in 3D Box : Energy Spectrum & Degeneracy
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