

Physics 2D Lecture Slides Lecture 26: March 2nd 2005

Vivek Sharma UCSD Physics

Table 5.2Common Observables and Associated Operators		
Observable	Symbol	Associated Operator
position	x	X
momentum	p	$\frac{\hbar}{i}\frac{\partial}{\partial x}$
potential energy	$oldsymbol{U}$	U(x)
kinetic energy	K	$-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}$
hamiltonian	Н	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+U(x)$
total energy	E	$i\hbar \frac{\partial}{\partial t}$

Particle in 3D Rigid Box : Separation of Orthogonal Variables Wavefunctions are like $\psi_1(x) \propto \sin k_1 x$, $\psi_2(y) \propto \sin k_2 y$, $\psi_3(z) \propto \sin k_3 z$ Continuity Conditions for ψ_i and its first spatial derivatives $\Rightarrow [n_i \pi = k_i L]$ Leads to usual Quantization of Linear Momentum $[\vec{p}=\hbar\vec{k}]$in 3D $p_x = (\frac{\pi\hbar}{L})n_1$; $p_y = (\frac{\pi\hbar}{L})n_2$; $p_z = (\frac{\pi\hbar}{L})n_3$ ($n_1, n_2, n_3 = 1, 2, 3, ...\infty$) Note: by usual Uncertainty Principle argument neither of $n_1, n_2, n_3 = 0$! (why?) Particle Energy $E = K+U = K + 0 = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2) = [\frac{\pi^2\hbar^2}{2mL^2}(n_1^2 + n_2^2 + n_3^2)]$ Energy is again quantized and brought to you by integers n_1, n_2, n_3 (independent) and $\psi(\vec{r})=A \sin k_1 x \sin k_2 y \sin k_3 z$ (A = Overall Normalization Constant) $\Psi(\vec{r},t)=\psi(\vec{r}) e^{-i\frac{E}{\hbar}t} = A [\sin k_1 x \sin k_2 y \sin k_3 z] e^{-i\frac{E}{\hbar}t}$

Particle in 3D Box :Wave function Normalization Condition

$$\Psi(\vec{r},t) = \psi(\vec{r}) e^{-i\frac{E}{\hbar}t} = A [\sin k_1 x \sin k_2 y \sin k_3 z] e^{-i\frac{E}{\hbar}t}$$

$$\Psi^*(\vec{r},t) = \psi^*(\vec{r}) e^{i\frac{E}{\hbar}t} = A [\sin k_1 x \sin k_2 y \sin k_3 z] e^{i\frac{E}{\hbar}t}$$

$$\Psi^*(\vec{r},t)\Psi(\vec{r},t) = A^2 [\sin^2 k_1 x \sin^2 k_2 y \sin^2 k_3 z]$$
Normalization Condition : $1 = \iiint_{x,y,z} P(r) dx dy dz \Rightarrow$

$$I = A^2 \int_{x=0}^{L} \sin^2 k_1 x dx \int_{y=0}^{L} \sin^2 k_2 y dy \int_{z=0}^{L} \sin^2 k_3 z dz = A^2 \left(\sqrt{\frac{L}{2}}\right) \left(\sqrt{\frac{L}{2}}\right) \left(\sqrt{\frac{L}{2}}\right)$$

$$\Rightarrow A = \left[\frac{2}{L}\right]^{\frac{3}{2}} \text{ and } \Psi(\vec{r},t) = \left[\frac{2}{L}\right]^{\frac{3}{2}} [\sin k_1 x \sin k_2 y \sin k_3 z] e^{-i\frac{E}{\hbar}t}$$

