

> Vivek Sharma
> UCSD Physics

Normalized Spherical Harmonics \& Structure in H Atom

TABLE 7-1 Spherical harmonics

$l=0$	$m=0$	$Y_{00}=\sqrt{\frac{1}{4 \pi}}$
$l=1$	$m=1$	$Y_{11}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi}$
$m=0$	$Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta$	
$l=2$	$m=-1$	$Y_{1-1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi}$
$m=2$	$Y_{22}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{2 i \phi}$	
$m=1$	$Y_{21}=-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi}$	
$m=0$	$Y_{2-1}^{\frac{5}{16 \pi}}\left(3 \cos { }^{2} \theta-1\right)$	
$m=-1$	$\frac{15}{8 \pi} \sin ^{2} \theta \cos \theta e^{-i \phi}$	
m	$=-2$	$Y_{2-2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{-2 i \phi}$

Excited States $(n>1)$ of Hydrogen Atom : Birth of Chemistry !
Features of Wavefunction in $\theta \& \phi$:

Consider $n=2, l=0 \Rightarrow \psi_{200}=$ Spherically Symmetric (last slide)

Excited States (3 \& each with same E_{n}) :
$\psi_{211}, \psi_{210}, \psi_{21-1}$ are all 2p states
$\psi_{211}=\mathrm{R}_{21} \mathrm{Y}_{1}^{1}=\left(\frac{1}{\pi}\right)\left(\frac{\mathrm{Z}}{\mathrm{a}_{0}}\right)^{3 / 2}\left(\frac{Z}{8}\right)\left(\frac{r}{a_{0}}\right) e^{\frac{-\mathrm{Zr}}{a_{0}}} \cdot \sin \theta \cdot e^{i \phi}$
$\left|\psi_{211}\right|^{2}=\left|\psi_{21}^{*} \psi_{211}\right| \propto \sin ^{2} \theta$ Max at $\theta=\frac{\pi}{2}$, min at $\theta=0 ;$ Symm in ϕ

What about $\left(\mathrm{n}=2, \ell=1, \mathrm{~m}_{1}=0\right)$
$\psi_{210}=R_{21}(\mathrm{r}) \mathrm{Y}_{1}^{0}(\theta, \phi) ;$
$\mathrm{Y}_{1}^{0}(\theta, \phi) \propto \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta ;$
Function is \max at $\theta=0, \min$ at $\theta=\frac{\pi}{2}$

We call this $2 p_{z}$ state because of its extent in z

Excited States ($\mathrm{n}>1$) of Hydrogen Atom : Birth of Chemistry !

Remember Principle of Linear Superposition
for the TISE which is basically a simple differential equation:
$-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+U \psi=E \psi$

Principle of Linear Superposition \Rightarrow If ψ_{1} and ψ_{2} are sol. of TISE then a "designer" wavefunction made of linear sum
$\psi^{\prime}=a \psi_{1}+b \psi_{2}$ is also a sol. of the diff. equation !
To check this, just substitute ψ^{\prime} in place of ψ
\& convince yourself that

$$
-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2} \psi^{\prime}+U \psi^{\prime}=E \psi^{\prime}
$$

The diversity in Chemistry and Biology DEPENDS on this superposition rule

Designer Wave Functions: Solutions of S. Eq !

Linear Superposition Principle means allows me to "cook up" wavefunctions $\psi_{2 \mathrm{p}_{\mathrm{x}}}=\frac{1}{\sqrt{2}}\left[\psi_{211}+\psi_{21-1}\right] \ldots .$. has electron "cloud" oriented along x axis $\psi_{2 \mathrm{p}_{\mathrm{y}}}=\frac{1}{\sqrt{2}}\left[\psi_{211}-\psi_{21-1}\right] \ldots .$. has electron "cloud" oriented along y axis
So from 4 solutions $\psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1} \rightarrow 2 s, 2 p_{x}, 2 p_{y}, 2 p_{z}$

Similarly for $\mathrm{n}=3$ states ... and so on ...can get very complicated structure in $\theta \& \phi \ldots . .$. which I can then mix \& match to make electrons "most likely" to be where I want them to be !

Designer Wave Functions: Solutions of S. Eq !

$n=2, \ell=1, m_{\ell}= \pm 1 \quad n=3, \ell=1, m_{\ell}=0 \quad n=3, \ell=2, m_{\ell}=0$

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \Phi}{d \phi^{2}}+\mathrm{m}_{l}^{2} \Phi=0 \ldots \ldots \ldots \ldots . . .(1) \\
& \tag{2}\\
& {\left[\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta}\right)+\left[l(l+1)-\frac{\mathrm{m}_{l}^{2}}{\sin ^{2} \theta}\right]\right] \Theta(\theta)=0 \ldots .} \tag{3}\\
& {\left[\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{\partial}{\partial r}\right)+\left[\frac{2 \mathrm{~m}^{2}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)-\frac{l(l+1)}{r^{2}}\right]\right] R(r)=0 . .}
\end{align*}
$$

These 3 "simple" diff. eqn describe the physics of the Hydrogen atom.
The hydrogen atom brought to you by the letters

$$
\begin{aligned}
& \mathrm{n}=1,2,3,4,5, \ldots . \infty \\
& l=0,1,2,3,4 \ldots(n-1) \\
& \mathrm{m}_{l}=0, \pm 1, \pm 2, \pm 3, \ldots \pm l
\end{aligned}
$$

The Spatial Wave Function of the Hydrogen Atom
$\Psi(r, \theta, \phi)=R_{n l}(r) \cdot \Theta_{l m \mid}(\theta) \quad \Phi_{\mathrm{m}_{1}}(\phi)=R_{n l} Y_{l}^{m_{l}}$ (Spherical Harmonics)

What's So "Magnetic" ?

Precessing electron \rightarrow Current in loop \rightarrow Magnetic Dipole moment μ

The electron's motion \rightarrow hydrogen atom is a dipole magnet

The "Magnetism" of an Orbiting Electron

Precessing electron \rightarrow Current in loop \rightarrow Magnetic Dipole moment μ

Electron in motion around nucleus \Rightarrow circulating charge \Rightarrow curent i
$i=\frac{-e}{T}=\frac{-e}{\frac{2 \pi r}{v}}=\frac{-e p}{2 \pi m r}$; Area of current loop $\mathrm{A}=\pi \mathrm{r}^{2}$
Magnetic Moment $|\boldsymbol{\mu}|=\mathrm{iA}=\left(\frac{-\mathrm{e}}{2 \mathrm{~m}}\right) r p ; \quad \vec{\mu}=\left(\frac{-\mathrm{e}}{2 \mathrm{~m}}\right) \vec{r} \times \vec{p}=\left(\frac{-\mathrm{e}}{2 \mathrm{~m}}\right) \vec{L}$
Like the $\overrightarrow{\mathrm{L}}$, magnetic moment $\vec{\mu}$ also precesses about " z " axis
z component, $\mu_{\mathrm{z}}=\left(\frac{-\mathrm{e}}{2 \mathrm{~m}}\right) L_{z}=\left(\frac{-\mathrm{e} \hbar}{2 \mathrm{~m}}\right) m_{l}=-\mu_{B} m_{l}=$ quantized !

Why all this? Need to find a way to break the Energy Degeneracy \& get electron in each $\left(n, l, m_{l}\right)$ state to identify itself, so we can "talk" to it and make it do our bidding:
" Walk this way, talk this way!"

"Lifting" Degeneracy : Magnetic Moment in External B Field

WORK done to reorient $\vec{\mu}$ against \vec{B} field: $\mathrm{dW}=\tau \mathrm{d} \theta=-\mu \mathrm{B} \sin \theta \mathrm{d} \theta$ $d W=d(\mu \mathrm{~B} \cos \theta)$: This work is stored as orientational Pot. Energy U $d W=-d U$
Define Magnetic Potential Energy $\mathrm{U}=-\vec{\mu} \cdot \vec{B}=-\mu \cos \theta \cdot B=-\mu_{z} B$ Change in Potential Energy $\mathrm{U}=\frac{\mathrm{e} \hbar}{2 \mathrm{~m}_{\mathrm{e}}} m_{l} B=\hbar \omega_{L} m_{l}$

Zeeman Effect in Hydrogen Atom
In presence of External B Field, Total energy of H atom changes to

$$
\mathrm{E}=\mathrm{E}_{0}+\hbar \omega_{L} m_{l}
$$

So the Ext. B field can break the E degeneracy "organically" inherent in the H atom. The Energy now depends not just on n but also m_{l}

Four (not 3) Numbers Describe Hydrogen Atom $\rightarrow \mathrm{n}, \mathrm{l}, \mathrm{m}_{\mathrm{l}}, \mathrm{m}_{\mathrm{s}}$

$$
\begin{array}{||}
\hline \text { "Spinning" charge gives rise to a dipole moment } \vec{\mu}_{s} \\
\hline
\end{array}
$$

Imagine (semi-clasically,incorrectly!) electron as sphere: charge q , radius r
Total charge uniformly distributed: $q=\sum_{i} \Delta q_{i}$;
as electron spins, each "chargelet" rotates \Rightarrow current \Rightarrow dipole moment $\vec{\mu}_{\mathrm{s}_{\mathrm{i}}}$

$$
\vec{\mu}_{s}=\left(\frac{q}{2 m_{e}}\right) \sum_{i} \vec{\mu}_{s_{\mathrm{i}}}=g\left(\frac{q}{2 m_{e}}\right) \vec{S}
$$

In a Magnetic Field $\overrightarrow{\mathrm{B}} \Rightarrow$ magnetic energy due to spin $\mathrm{U}_{\mathrm{S}}=\vec{\mu}_{s} \cdot \vec{B}$
Net Angular Momentum in H Atom $\overrightarrow{\mathrm{J}}=\overrightarrow{\mathrm{L}}+\overrightarrow{\mathrm{S}}$
Net Magnetic Moment of H atom: $\vec{\mu}=\vec{\mu}_{0}+\vec{\mu}_{s}=\left(\frac{-e}{2 m_{e}}\right)(\vec{L}+g \vec{S})$
Notice that the net dipole moment vector $\vec{\mu}$ is not $\|$ to \vec{J}

(There are many such "ubiquitous" quantum numbers for elementary particle but we won't teach you about them in this course !)

Helium Atom: Two electrons around a Nucleus

```
In Helium, each electron has : kinetic energy + electrostatic potential energy
If electron "1" is located at }\mp@subsup{r}{1}{}&& electron "2"is located at \mp@subsup{r}{2}{}\mathrm{ then TISE has terms like:
H}=-\frac{\mp@subsup{\hbar}{}{2}}{2m}\mp@subsup{\nabla}{1}{2}+k\frac{(2e)(-e)}{\mp@subsup{r}{1}{}};\mp@subsup{H}{2}{}=-\frac{\mp@subsup{\hbar}{}{2}}{2m}\mp@subsup{\nabla}{2}{2}+k\frac{(2e)(-e)}{\mp@subsup{r}{2}{}}\mathrm{ such that
    H}\psi+\mp@subsup{H}{2}{}\psi=E\psi;\mp@subsup{H}{1}{}&\mp@subsup{H}{2}{}\mathrm{ are same except for "label"
Independent Particle Approx }=>\mathrm{ ignore repulsive U=k }\frac{\mp@subsup{\textrm{e}}{}{2}}{|\mp@subsup{\textrm{r}}{2}{}-\mp@subsup{r}{1}{}|}\mathrm{ term
Helium WaveFunction:\psi=\psi(\mp@subsup{\textrm{r}}{1}{},\mp@subsup{r}{2}{}); Probability P=\psi**(\mp@subsup{r}{1}{},\mp@subsup{r}{2}{})\psi(\mp@subsup{\textrm{r}}{1}{},\mp@subsup{r}{2}{})
But if we exchange location of (identical, indistinguishable) electrons }=>|\psi(\mp@subsup{\textrm{r}}{1}{},\mp@subsup{r}{2}{})|=|\psi(\mp@subsup{\textrm{r}}{2}{},\mp@subsup{r}{1}{})
In general, when \psi(\mp@subsup{r}{1}{},\mp@subsup{r}{2}{})=\psi(\mp@subsup{r}{2}{\prime},\mp@subsup{r}{1}{})\ldots\ldots\ldots\ldots\ldots.\ldots..........Bosonic System (made of photons, e.g)
```



```
# Helium wavefunction must be ODD; if electron "1" is in state a & electron "2" is in state b
Then the net wavefunction }\mp@subsup{\psi}{ab}{}(\mp@subsup{\textrm{r}}{1}{},\mp@subsup{\textrm{r}}{2}{})=\mp@subsup{\psi}{\textrm{a}}{}(\mp@subsup{r}{1}{})\cdot\mp@subsup{\psi}{\textrm{b}}{}(\mp@subsup{r}{2}{})\mathrm{ satisfies
    H}\mp@subsup{\psi}{\textrm{a}}{(
    H}\mp@subsup{\psi}{2}{}\mp@subsup{\psi}{\textrm{a}}{(}(\mp@subsup{r}{1}{})\cdot\mp@subsup{\psi}{\textrm{b}}{}(\mp@subsup{r}{2}{})=\mp@subsup{E}{b}{}\mp@subsup{\psi}{\textrm{a}}{(}(\mp@subsup{r}{1}{})\cdot\mp@subsup{\psi}{\textrm{b}}{}(\mp@subsup{r}{2}{}
    and the sum [H1+H2
    Total Helium Energy E }\simeq\mp@subsup{\textrm{E}}{\textrm{a}}{}+\mp@subsup{\textrm{E}}{\textrm{b}}{}=\mathrm{ =sum of Hydrogen atom like E
```

Helium wavefunction must be ODD \Rightarrow anti-symmetric: $\psi_{a b}\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)=-\psi_{a b}\left(\mathrm{r}_{2}, \mathrm{r}_{1}\right)$

So it must be that $\psi_{a b}\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)=\psi_{\mathrm{a}}\left(r_{1}\right) \cdot \psi_{\mathrm{b}}\left(r_{2}\right)-\psi_{\mathrm{a}}\left(r_{2}\right) \cdot \psi_{\mathrm{b}}\left(r_{1}\right)$
It is impossible to tell, by looking at probability or energy which particular electron is in which state
If both are in the same quantum state $\Rightarrow \mathrm{a}=\mathrm{b} \& \psi_{a a}\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)=\psi_{b b}\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)=0 \ldots$ Pauli Exclusion principle
General Principles for Atomic Structure for n -electron system:

1. n-electron system is stable when its total energy is minimum
2.Only one electron can exist in a particular quantum state in an atom...not 2 or more!
2. Shells \& SubShells In Atomic Structure:
(a) ignore inter-electron repulsion (crude approx.)
(b) think of each electron in a constant "effective" mean Electric field
(Effective field: "Seen" Nuclear charge $(+\mathrm{Ze})$ reduced by partial screening due to other electrons "buzzing" closer (in r) to Nucleus)
Electrons in a SHELL: have same n , are at similar $<\mathrm{r}>$ from nucleus, have similar energies
Electons in a SubShell: have same principal quantum number n

- Energy depends on l, those with lower l closer to nucleus, more tightly bound
- all electrons in sub-shell have same energy, with minor dependence on m_{l}, m_{s}

Electronic Configurations of n successive elements from Lithium to Neon

	Atom	$2 s$		$2 p$	Electron configuration
Hund's Rule: Whenever possible \quad Li $\begin{array}{llllllllllllll} \\ \end{array}$					
-electron in a sub-shell remain unpaired - States with spins parallel occupied first	Be	11			$1 s^{2} 2 s^{2}$
- Because electrons repel when close together - $\quad \rightarrow$ electrons in same sub-shell (I) and same spin	B	\downarrow	\uparrow		$1 s^{2} 2 s^{2} 2 p^{1}$
-Must have diff. m_{1} -(very diff. angular distribution)	C	1 \downarrow	\uparrow		$1 s^{2} 2 s^{2} 2 p^{2}$
- Electrons with parallel spin are further apart -Than when anti-parallel \Rightarrow lesser E state		\downarrow	1		$1 s^{2} 2 s^{2} 2 p^{3}$
-Get filled first	O	\downarrow	\uparrow		$1 s^{2} 2 s^{2} 2 p^{4}$
		\downarrow	$\uparrow \downarrow$	11	$1 s^{2} 2 s^{2} 2 p^{5}$
		$\uparrow 1$	$\uparrow 1$	11	$1 s^{2} 2 s^{2} 2 p^{6}$
That's all I can teach you this quarter; Rest is all Chemistry !					

