

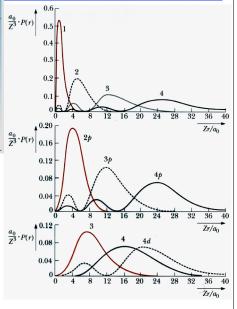
Physics 2D Lecture Slides Lecture 31: March 11th 2005

Vivek Sharma UCSD Physics

Radial Probability Distribution $P(r) = r^2 R(r)$ Table 7-2 Radial functions for hydrogen n = 1 l = 0 $R_{10} = \frac{2}{\sqrt{a_0}} e^{-r/a_{k_0}}$ n = 2 l = 0 $R_{20} = \frac{1}{\sqrt{2a_0}} (1 - \frac{r}{2a_0}) e^{-r/2a_{k_0}}$ l = 1 $R_{21} = \frac{1}{2\sqrt{6a_0}} \frac{r}{a_0} e^{-r/2a_{k_0}}$ l = 0 $R_{30} = \frac{2}{3\sqrt{3a_0}} (1 - \frac{2r}{3a_0} + \frac{2r^2}{27a_0^2}) e^{-r/3a_{k_0}}$ l = 1 $R_{31} = \frac{8}{27\sqrt{6a_0}} \frac{r}{a_0} (1 - \frac{r}{6a_0}) e^{-r/3a_{k_0}}$ l = 2 $R_{32} = \frac{4}{8\sqrt{30a_0}} \frac{r^2}{a_0^2} e^{-r/3a_{k_0}}$

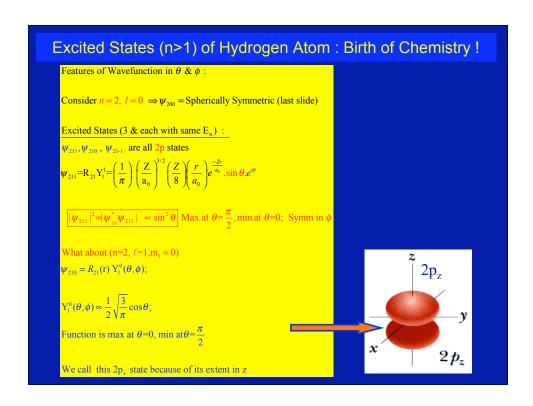
Because $P(r)=r^2R(r)$

No matter what R(r) is for some n The prob. Of finding electron inside nucleus =0



Normalized Spherical Harmonics & Structure in H Atom

TABLE 7-1 Spherical harmonics		
<i>l</i> = 0	m = 0	$Y_{00} = \sqrt{\frac{1}{4\pi}}$
l = 1	m = 1	$Y_{11} = -\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\phi}$
	m = 0	$Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta$
	m = -1	$Y_{1-1} = \sqrt{\frac{3}{8\pi}} \sin \theta \ e^{-i\phi}$
<i>l</i> = 2	m=2	$Y_{22} = \sqrt{\frac{15}{32\pi}} \sin^2 \theta \ e^{2i\phi}$
	m = 1	$Y_{21} = -\sqrt{\frac{15}{8\pi}}\sin\theta\cos\thetae^{i\phi}$
	m = 0	$Y_{20} = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$
	m = -1	$Y_{2-1} = \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta e^{-i\phi}$
	m = -2	$Y_{2-2} = \sqrt{\frac{15}{32\pi}}\sin^2\theta \ e^{-2i\phi}$



Excited States (n>1) of Hydrogen Atom: Birth of Chemistry!

Remember Principle of Linear Superposition

for the TISE which is basically a simple differential equation:

$$-\frac{\hbar^2}{2m}\nabla^2\psi + U\psi = E\psi$$

Principle of Linear Superposition \Rightarrow If ψ_1 and ψ_2 are sol. of TISE

then a "designer" wavefunction made of linear sum

 $\psi' = a\psi_1 + b\psi_2$ is also a sol. of the diff. equation!

To check this, just substitute ψ' in place of ψ & convince yourself that

$$-\frac{\hbar^2}{2m}\nabla^2\psi' + U\psi' = E\psi'$$

The diversity in Chemistry and Biology DEPENDS on this superposition rule

Designer Wave Functions: Solutions of S. Eq!

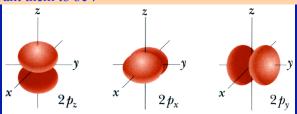
Linear Superposition Principle means allows me to "cook up" wavefunctions

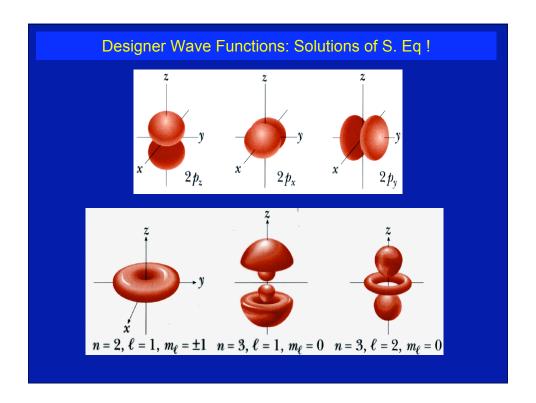
$$\psi_{2p_x} = \frac{1}{\sqrt{2}} [\psi_{211} + \psi_{21-1}]$$
has electron "cloud" oriented along x axis

$$\psi_{2p_y} = \frac{1}{\sqrt{2}} [\psi_{211} - \psi_{21-1}]$$
has electron "cloud" oriented along y axis

So from 4 solutions
$$\psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1} \to 2s, 2p_x, 2p_y, 2p_z$$

Similarly for n=3 states ...and so on ...can get very complicated structure in θ & ϕwhich I can then mix & match to make electrons "most likely" to be where I want them to be !





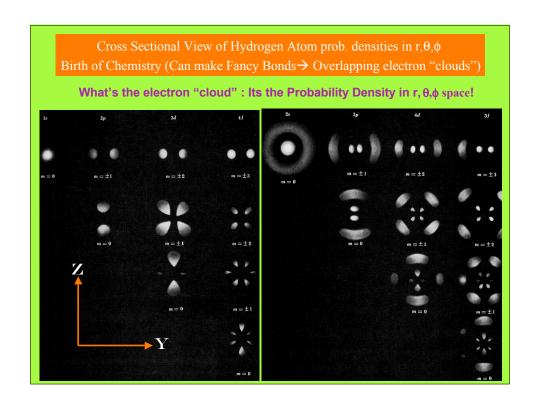
$$\frac{\mathrm{d}^2\Phi}{\mathrm{d}\phi^2} + \mathrm{m}_l^2\Phi = 0.....(1)$$

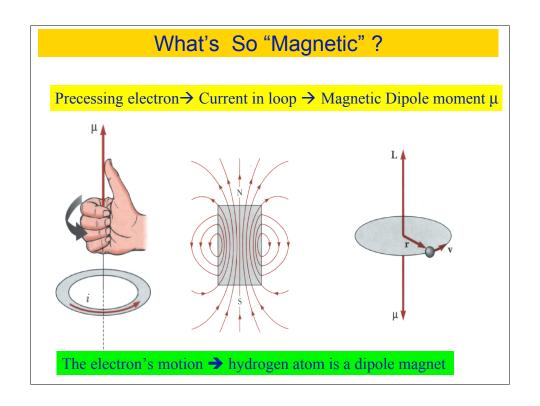
$$\left[\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta}\right) + \left[l(l+1) - \frac{\mathrm{m}_l^2}{\sin^2\theta}\right]\right] \Theta(\theta) = 0....(2)$$

$$\left[\frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\partial}{\partial r}\right) + \left[\frac{2\mathrm{m}r^2}{h^2} \left(1 + \frac{\mathrm{ke}^2}{r}\right) \cdot \frac{l(l+1)}{r^2}\right] R(r) = 0...(3)\right]$$
These 3 "simple" diff. eqn describe the physics of the Hydrogen atom
$$I = 1, 2, 3, 4, 5, \infty$$

$$l = 0, 1, 2, 3, 4, (n-1)$$

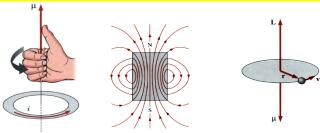
$$\mathrm{m}_l = 0, \pm 1, \pm 2, \pm 3, ... \pm l$$
The Spatial Wave Function of the Hydrogen Atom
$$\Psi(r, \theta, \phi) = R_{nl}(r) \cdot \Theta_{lm_l}(\theta) \cdot \Phi_{\mathrm{m}_l}(\phi) = R_{nl}Y_l^{m_l} \text{ (Spherical Harmonics)}$$





The "Magnetism" of an Orbiting Electron

Precessing electron→ Current in loop → Magnetic Dipole moment µ



Electron in motion around nucleus \Rightarrow circulating charge \Rightarrow curent i

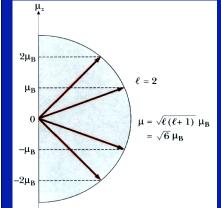
$$i = \frac{-e}{T} = \frac{-e}{\frac{2\pi r}{v}} = \frac{-ep}{2\pi mr}$$
; Area of current loop A= π r²

Magnetic Moment
$$|\mu| = iA = \left(\frac{-e}{2m}\right) rp;$$
 $|\vec{\mu}| = \left(\frac{-e}{2m}\right) \vec{r} \times \vec{p} = \left(\frac{-e}{2m}\right) \vec{L}$

Like the \vec{L} , magnetic moment $\vec{\mu}$ also precesses about "z" axis

z component,
$$\mu_z = \left(\frac{-e}{2m}\right)L_z = \left(\frac{-e\hbar}{2m}\right)m_l = -\mu_B m_l = quantized!$$

Quantized Magnetic Moment



$$\mu_z = \left(\frac{-e}{2m}\right) L_z = \left(\frac{-e\hbar}{2m}\right) m_i$$

 $=-\mu_{\scriptscriptstyle B}m_{\scriptscriptstyle l}$

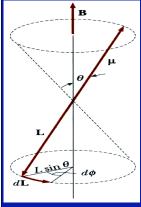
 $\mu_B = \text{Bohr Magnetron}$

 $=\left(\frac{e\hbar}{2m_e}\right)$

Why all this? Need to find a way to break the Energy Degeneracy & get electron in each (n,l,m_l) state to identify itself, so we can "talk" to it and make it do our bidding:

" Walk this way, talk this way!"

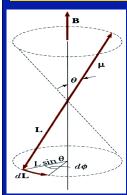
"Lifting" Degeneracy: Magnetic Moment in External B Field



Apply an External \vec{B} field on a Hydrogen atom (viewed as a dipole) Consider $\vec{B} \parallel \vec{Z}$ axis (could be any other direction too)

The dipole moment of the Hydrogen atom (due to electron orbit) experiences a Torque $\vec{\tau} = \vec{\mu} \times \vec{B}$ which does work to align $\vec{\mu} \parallel \vec{B}$ but this can not be (same Uncertainty principle argument) \Rightarrow So, Instead, $\vec{\mu}$ precesses (dances) around \vec{B} ... like a spinning top The Azimuthal angle ϕ changes with time: calculate frequency Look at Geometry: |projection along x-y plane: |dL| = Lsin θ .d ϕ $\Rightarrow d\phi = \frac{|dL|}{L\sin\theta}$; Change in Ang Mom. | $dL \models |\tau| dt = \frac{q}{2m} LB \sin\theta dt$ $\Rightarrow \omega_L = \frac{d\phi}{dt} = \frac{1}{L\sin\theta} \frac{|dL|}{dt} = \frac{1}{L\sin\theta} \frac{q}{2m} LB \sin\theta = \frac{qB}{2m_e}$ Larmor Freq ω_L depends on B, the applied external magnetic field

"Lifting" Degeneracy: Magnetic Moment in External B Field



WORK done to reorient $\vec{\mu}$ against \vec{B} field: $dW = \tau d\theta = -\mu B \sin\theta d\theta$ $dW = d(\mu B \cos\theta)$: This work is stored as orientational Pot. Energy U dW = -dU

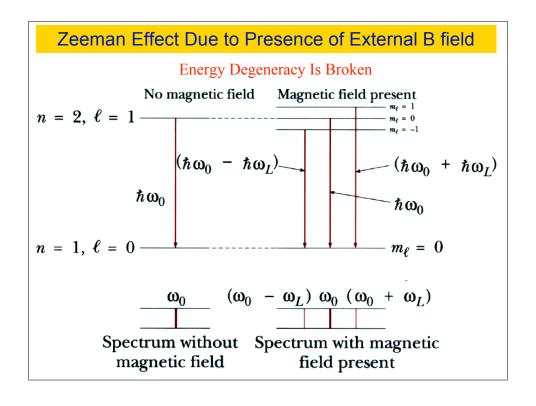
Define Magnetic Potential Energy U= $-\vec{\mu}.\vec{B} = -\mu\cos\theta.B = -\mu_zB$ Change in Potential Energy U= $\frac{e\hbar}{2m_c}m_tB = \boxed{\hbar\omega_Lm_t}$

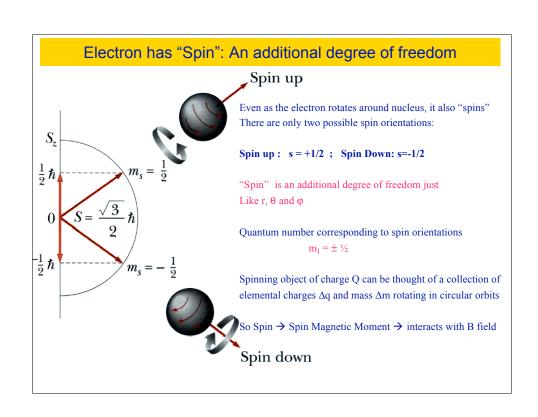
Zeeman Effect in Hydrogen Atom

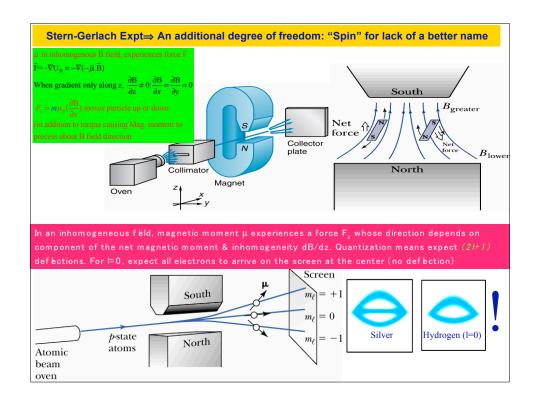
In presence of External B Field, Total energy of H atom changes to

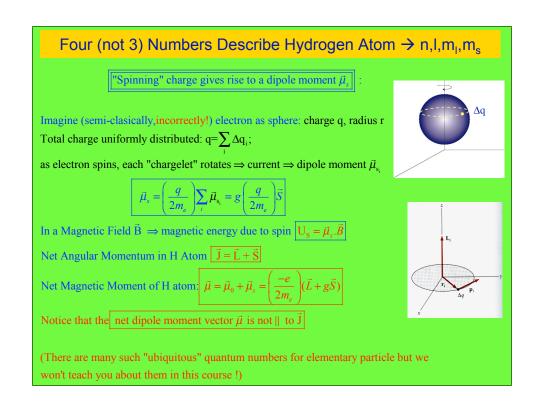
$$E=E_0+\hbar\omega_L m_l$$

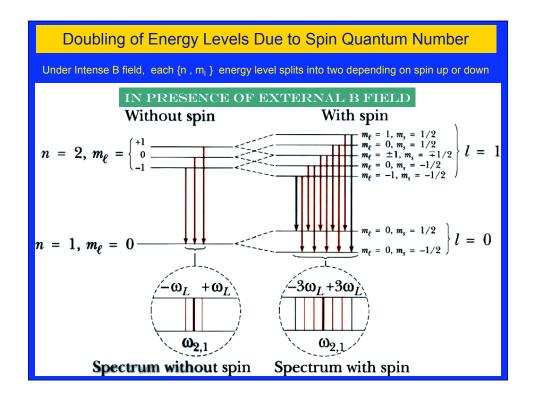
So the Ext. B field can break the E degeneracy "organically" inherent in the H atom. The Energy now depends not just on n but also m_l

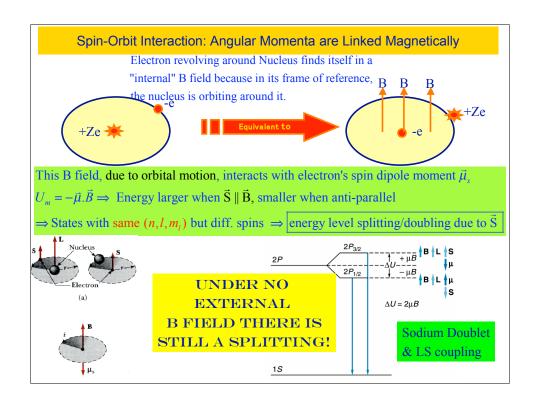


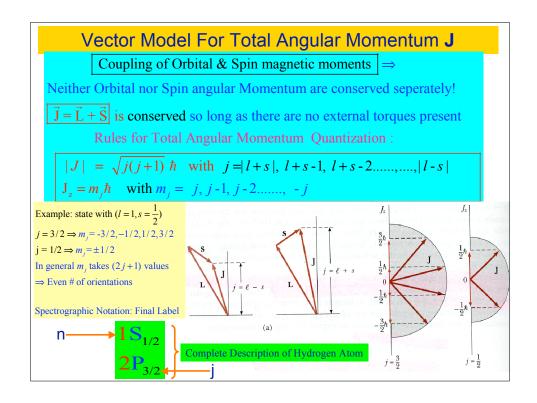


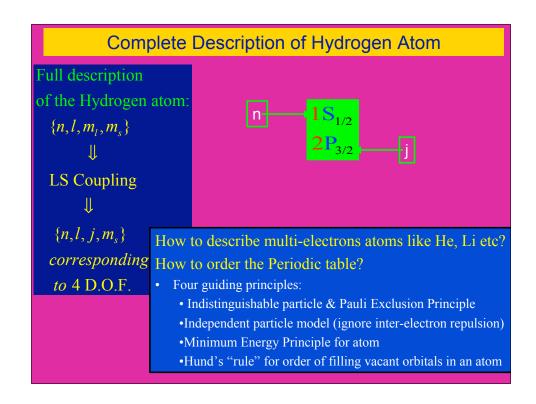












Multi-Electron Atoms: >1 electron in orbit around Nucleus

In Hydrogen Atom $\psi(\mathbf{r}, \theta, \phi) = \mathbf{R}(\mathbf{r}) \cdot \Theta(\theta) \cdot \Phi(\phi) \equiv \{n, l, j, m_i\}$

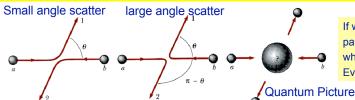
In n-electron atom, to simplify, ignore electron-electron interactions complete wavefunction, in "independent" particle approx":

$$\psi(1,2,3,..n) = \psi(1).\psi(2).\psi(3)...\psi(n)$$
 ????

Complication → Electrons are identical particles, labeling meaningless! Question: How many electrons can have same set of quantum #s?

Answer: No two electrons in an atom can have SAME set of quantum#s (if not, all electrons would occupy 1s state (least energy)... no structure!!

Example of Indistinguishability: electron-electron scattering



If we cant follow electron path, don't know between which of the two scattering Event actually happened

Helium Atom: Two electrons around a Nucleus

In Helium, each electron has: kinetic energy + electrostatic potential energy If electron "1" is located at r₁ & electron "2" is located at r₂, then TISE has terms like:

$$\begin{aligned} \mathbf{H}_{1} &= -\frac{\hbar^{2}}{2m} \nabla_{1}^{2} + k \frac{(2e)(-e)}{r_{1}}; \ \mathbf{H}_{2} &= -\frac{\hbar^{2}}{2m} \nabla_{2}^{2} + k \frac{(2e)(-e)}{r_{2}} \text{ such that} \\ & \boxed{\mathbf{H}_{1} \psi + \mathbf{H}_{2} \psi = \mathbf{E} \psi} \quad \mathbf{H}_{1} \otimes \mathbf{H}_{2} \text{ are same except for "label"} \end{aligned}$$



Helium WaveFunction: $\psi = \psi(\mathbf{r}_1, \mathbf{r}_2)$; Probability $P = \psi^*(\mathbf{r}_1, \mathbf{r}_2)\psi(\mathbf{r}_1, \mathbf{r}_2)$

But if we exchange location of (identical, indistinguishable) electrons $\Rightarrow |\psi(\mathbf{r}_i, r_i)| = |\psi(\mathbf{r}_i, r_i)|$

In general, when $\psi(\mathbf{r}_1, \mathbf{r}_2) = \psi(\mathbf{r}_2, \mathbf{r}_1)$Bosonic System (made of photons, e.g.)

when $\psi(\mathbf{r}_1, \mathbf{r}_2) = -\psi(\mathbf{r}_2, \mathbf{r}_1)$fermionic System (made of electron, proton e.g)

⇒ Helium wavefunction must be ODD; if electron "1" is in state a & electron "2" is in state b

Then the net wavefunction $\psi_{ab}(\mathbf{r}_1,\mathbf{r}_2) = \psi_a(\mathbf{r}_1)\psi_b(\mathbf{r}_2)$ satisfies

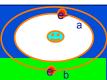
 $H_1\psi_*(r_1).\psi_h(r_2) = E_*\psi_*(r_1).\psi_h(r_2)$

 $H_{b}\psi_{a}(r_{1})\psi_{b}(r_{2}) = E_{b}\psi_{a}(r_{1})\psi_{b}(r_{2})$

 $[H_1 + H_2]\psi_a(r_1)\psi_b(r_2) = (E_a + E_b)\psi_a(r_1)\psi_b(r_2)$ and the sum

Total Helium Energy $E \approx E_1 + E_k = \text{sum of Hydrogen atom like E}$

Helium Atom: Two electrons around a Nucleus



Helium wavefunction must be ODD \Rightarrow anti-symmetric: $\psi_{ab}(r_1,r_2) = \psi_{ab}(r_2,r_1)$

So it must be that $\psi_{ab}(\mathbf{r}_1, \mathbf{r}_2) = \psi_a(r_1) \psi_b(r_2) - \psi_a(r_2) \psi_b(r_1)$

It is impossible to tell, by looking at probability or energy which particular electron is in which state If both are in the same quantum state $\Rightarrow a=b \& \psi_{ov}(\mathbf{r}_1,\mathbf{r}_2)=\psi_{hh}(\mathbf{r}_1,\mathbf{r}_2)=0...$ Pauli Exclusion principle

General Principles for Atomic Structure for n-electron system:

1. n-electron system is stable when its total energy is minimum

2. Only one electron can exist in a particular quantum state in an atom...not 2 or more!

3. Shells & SubShells In Atomic Structure:

(a) ignore inter-electron repulsion (crude approx.)

(b) think of each electron in a constant "effective" mean Electric field

(Effective field: "Seen" Nuclear charge (+Ze) reduced by partial screening due to other electrons "buzzing" closer (in r) to Nucleus)

Electrons in a SHELL: have same n, are at similar <r> from nucleus, have similar energies

Electons in a SubShell: have same principal quantum number n

- Energy depends on *l*, those with lower *l* closer to nucleus, more tightly bound

- all electrons in sub-shell have same energy, with minor dependence on m_i , m

Shell & Sub-Shell Energies & Capacity

ENERGY 6p 5d 4f 6s 5p 4d 5s

4p

-3d

4s

3*p* 3*s*

2*p* 2*s*

1s

- 1. Shell & subshell capacity limited due to Pauli Exclusion principle
- 2. Shell is made of sub-shells (of same principal quantum # n)
- 3. Subshell \Leftarrow (*n*,*l*), given $n \Rightarrow l = 0,1,2,3,..(n-1)$,

for any
$$l \implies m_l = 0, \pm 1, \pm 2, ... \implies (2l+1), m_s = \pm \frac{1}{2}$$

 \Rightarrow Max. # of electrons in a shell = \sum subshell capacity

$$N_{\text{MAX}} = \sum_{i=0}^{n-1} 2.(2I+1) = 2[1+3+5+..2(n-1)+1] = 2(n) \left[\frac{1}{2}(1+(2n-1))\right] = 2n^{\frac{1}{2}}$$

- The "K" Shell (n=1) holds 2 electrons. "L" Shell (n=1) holds 8 electrons, M shell (n=3) holds 18 electrons......
- Wi shell (II-3) floids 18 electrons ...
- 5. Shell is closed when fully occupied
- 6. Sub-Shell closed when
 - (a) $\sum \vec{L}_i = 0, \sum \vec{S}_i = 0, \Rightarrow$ Effective charge distribution= symmetric
 - (b) Electrons are tightly bound since they "see" large nuclear charge
- (c) Because $\sum \vec{L}_i = 0 \Rightarrow \text{ No dipole moment} \Rightarrow \text{ No ability to attract electrons}$
- \Rightarrow Inert! Noble gas
- 6.Alkali Atoms: have a single "s" electron in outer orbit;
- nuclear charge heavily shielded by inner shell electrons
- ⇒ very small binding energy of "valence" electron
- ⇒ large orbital radius of valence electron

