

Vivek Sharma<br>UCSD Physics

## Measurement Expectation: Statistics Lesson

- Ensemble \& probable outcome of a single measurement or the average outcome of a large \# of measurements
$\left\langle x>=\frac{n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{3}+\ldots n_{i} x_{i}}{n_{1}+n_{2}+n_{3}+\ldots n_{i}}=\frac{\sum_{i=1}^{n} n_{i} x_{i}}{N}=\frac{\int_{-\infty}^{\infty} x P(x) d x}{\int_{-\infty}^{\infty} P(x) d x}\right.$
For a general Fn $\mathrm{f}(\mathrm{x})$
$<f(x)\rangle=\frac{\sum_{i=1}^{n} n_{i} f\left(x_{i}\right)}{N}=\frac{\int_{-\infty}^{\infty} \psi^{*}(x) f(x) \psi(x) d x}{\int_{-\infty}^{\infty} P(x) d x}$

$$
\begin{aligned}
& \text { Sharpness of a distribution: } \\
& \text { = scatter around the average } \\
& \sigma=\sqrt{\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}}{N}} \\
& \sigma=\sqrt{\left(\overline{\left.x^{2}\right)}-(\bar{x})^{2}\right.} \\
& \sigma=\text { small } \rightarrow \text { Sharp distr. } \\
& \text { Uncertainty } \Delta \mathrm{X}=\sigma
\end{aligned}
$$

> Particle in the Box, $n=1$, find $<x>\& \Delta x$ ?
> $\psi(\mathrm{x})=\sqrt{\frac{2}{\mathrm{~L}}} \sin \left(\frac{\pi}{L} x\right)$
> $<\mathrm{x}>=\int_{-\infty}^{\infty} \sqrt{\frac{2}{\mathrm{~L}}} \sin \left(\frac{\pi}{L} x\right) x \sqrt{\frac{2}{\mathrm{~L}}} \sin \left(\frac{\pi}{L} x\right) d x$
> $=\frac{2}{L} \int_{0}^{L} x \sin ^{2}\left(\frac{\pi}{L} x\right) d x$, change variable $\theta=\left(\frac{\pi}{L} x\right)$
> $\Rightarrow\langle\mathrm{x}\rangle=\frac{2}{\mathrm{~L} \pi^{2}} \int_{0}^{\pi} \theta \sin ^{2} \theta$, use $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$
> $\Rightarrow\langle\mathrm{x}\rangle=\frac{2 \mathrm{~L}}{2 \pi^{2}}\left[\int_{0}^{\pi} \theta \mathrm{d} \theta-\int_{0}^{\pi} \theta \cos 2 \theta d \theta\right]$ use $\int u d v=u v-\int \mathrm{vdu}$
> $\Rightarrow\langle\mathrm{x}\rangle=\frac{\mathrm{L}}{\pi^{2}}\left(\frac{\pi^{2}}{2}\right)=\frac{L}{2} \quad$ (same result as from graphing $\left.\psi^{2}(x)\right)$
> Similarly $\left\langle\mathrm{x}^{2}\right\rangle=\int_{0}^{L} \mathrm{x}^{2} \sin ^{2}\left(\frac{\pi}{L} x\right) d x=\frac{L^{2}}{3}-\frac{L^{2}}{2 \pi^{2}}$
> and $\Delta \mathrm{X}=\sqrt{\left\langle\mathrm{X}^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\frac{L^{2}}{3}-\frac{L^{2}}{2 \pi^{2}}-\frac{L^{2}}{4}}=0.18 L$
> $\Delta X=20 \%$ of L, Particle not sharply confined in Box

## Expectation Values \& Operators: More Formally

- Observable: Any particle property that can be measured
- X,P, KE, E or some combination of them, e,g: $\mathrm{x}^{2}$
- How to calculate the probable value of these quantities for a QM state ?
- Operator: Associates an operator with each observable
- Using these Operators, one calculates the average value of that Observable
- The Operator acts on the Wavefunction (Operand) \& extracts info about the Observable in a straightforward way $\rightarrow$ gets Expectation value for that observable

| $\left\langle Q>=\int_{-\infty}^{+\infty} \Psi^{*}(x, t)[\hat{Q}] \Psi^{*}(x, t) d x\right.$ |
| :--- |
| $Q$ is the observable, $[\hat{Q}]$ is the operator |
| $\&\langle Q>$ is the Expectation value |
| Examples: $[\mathrm{X}]=\mathrm{x}$, |
| $[\mathrm{K}]=\frac{[\mathrm{P}]^{2}}{2 \mathrm{~m}}=\frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2}}{\partial x^{2}}$ |
| $[\mathrm{E}]=\mathrm{i} \hbar \frac{\hbar}{\mathrm{i}} \frac{d}{d x}$ |

## Table 5.2 Common Observables and Associated Operators

| Observable | Symbol | Associated <br> Operator |
| :--- | :---: | :---: |
| position | $x$ | $x$ |
| momentum | $p$ | $\frac{\hbar}{i} \frac{\partial}{\partial x}$ |
| potential energy | $U$ | $U(x)$ |
| kinetic energy | $K$ | $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$ |
| hamiltonian | $H$ | $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)$ |
| total energy | $E$ | $i \hbar \frac{\partial}{\partial t}$ |

## Operators $\rightarrow$ Information Extractors

[p] or $\hat{\mathrm{p}}=\frac{\hbar}{\mathrm{i}} \frac{d}{d x} \quad$ Momentum Operator
gives the value of average mometum in the following way:
$<\mathrm{p}>=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[p] \psi(x) d x=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})\left(\frac{\hbar}{\mathrm{i}}\right) \frac{d \psi}{d x} d x$
Similerly :
$[\mathrm{K}]$ or $\hat{\mathrm{K}}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2}}{d x^{2}}$ gives the value of average KE
$<\mathrm{K}>=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[K] \psi(x) d x=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})\left(-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}\right) d x$
Similerly
$<\mathrm{U}>=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[U(x)] \psi(x) d x \quad:$ plug in the $\mathrm{U}(\mathrm{x})$ fn for that case and $<\mathrm{E}>=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[K+U(x)] \psi(x) d x=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})\left(-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}+U(x)\right) d x$
Hamiltonian Operator $[\mathrm{H}]=[\mathrm{K}]+[\mathrm{U}]$
The Energy Operator $[\mathrm{E}]=\mathrm{i} \hbar \frac{\partial}{\partial t}$ informs you of the average energy

## [H] \& [E] Operators

- $[\mathrm{H}]$ is a function of $x$
- [E] is a function of $t$.......they are really different operators
- But they produce identical results when applied to any solution of the time-dependent Schrodinger Eq.
- $[\mathrm{H}] \Psi(\mathrm{x}, \mathrm{t})=[\mathrm{E}] \Psi(\mathrm{x}, \mathrm{t})$

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x, t)\right] \Psi(x, t)=\left[i \hbar \frac{\partial}{\partial t}\right] \Psi(x, t)
$$

- Think of S. Eq as an expression for Energy conservation for a Quantum system


## Where do Operators come from? A touchy-feely answer

## Example: $[p]$ The momentum Extractor (operator):

Consider as an example: Free Particle Wavefunction
$\Psi(\mathrm{x}, \mathrm{t})=\mathrm{Ae}^{\mathrm{i}(\mathrm{kx}-\mathrm{wt})} ; \mathrm{k}=\frac{2 \pi}{\lambda}, \lambda=\frac{h}{p} \Rightarrow k=\frac{p}{\hbar}$
rewrite $\Psi(\mathrm{x}, \mathrm{t})=\mathrm{Ae}^{\mathrm{i}\left(\frac{p}{\hbar}-\mathrm{wt}\right)} ; \frac{\partial \Psi(\mathrm{x}, \mathrm{t})}{\partial x}=i \frac{p}{\hbar} \mathrm{Ae}^{\mathrm{i}\left(\frac{p}{\hbar}-\mathrm{wt}\right)}=i \frac{p}{\hbar} \Psi(\mathrm{x}, \mathrm{t})$
$\Rightarrow\left[\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x}\right] \Psi(\mathrm{x}, \mathrm{t})=\mathrm{p} \Psi(\mathrm{x}, \mathrm{t})$

So it is not unreasonable to associate $[\mathrm{p}]=\left[\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x}\right]$ with observable p

## Example: Average Momentum of Particle in Rigid Box

- Given the symmetry of the 1D box, we argued last time that <p> = 0 : now some inglorious math to prove it !
- Be lazy, when you can get away with a symmetry argument to solve a problem. .do it \& avoid the evil integration \& algebra.....but be sure! $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right) \quad \& \quad \psi^{*}{ }_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)$
$\langle p\rangle=\int_{-\infty}^{+\infty} \psi^{*}[p] \psi d x=\int_{-\infty}^{\infty} \psi^{*}\left[\frac{\hbar}{i} \frac{d}{d x}\right] \psi d x$
$\langle p\rangle=\frac{\hbar}{i} \frac{2}{L} \frac{n \pi}{L} \int_{-\infty}^{\infty} \sin \left(\frac{n \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) d x$
Since $\int \sin a x \operatorname{cosax} \mathrm{dx}=\frac{1}{2 \mathrm{a}} \sin ^{2} a x$...here $\mathrm{a}=\frac{\mathrm{n} \pi}{\mathrm{L}}$
$\Rightarrow\langle p\rangle=\frac{\hbar}{i L}\left[\sin ^{2}\left(\frac{n \pi}{L} x\right]_{x=0}^{x=L}=0\right.$ since $\operatorname{Sin}^{2}(0)=\operatorname{Sin}^{2}(n \pi)=0$
We knew THAT before doing any math !

Quiz 1: What is the $<\mathrm{p}>$ for the Quantum Oscillator in its symmetric ground state
Quiz 2: What is the <p> for the Quantum Oscillator in its asymmetric first excited state

## But what about the <KE> of the Particle in Box?

$\langle p\rangle=0$ so what about expectation value of $\mathrm{K}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}$ ?
$\langle K\rangle=0$ because $\langle p\rangle=0$; clearly not, since we showed $\mathrm{E}=\mathrm{KE} \neq 0$
Why ? What gives ?
Because $\mathrm{p}_{\mathrm{n}}= \pm \sqrt{2 m E_{n}}= \pm \frac{n \pi \hbar}{L} ; \quad$ " $\pm$ " is the key!
The AVERAGE $\mathrm{p}=0$, since particle is moving back \& forth

$$
<\mathrm{KE}>=<\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}>\neq 0 ; \quad \operatorname{not} \frac{\left\langle\mathrm{p}^{2}\right\rangle}{2 m}!
$$

Be careful when being "lazy"

Quiz: what about <KE> of a quantum Oscillator?
Does similar logic apply??

## Schrodinger Eqn: Stationary State Form

- Recall $\rightarrow$ when potential does not depend on time explicitly $\mathrm{U}(\mathrm{x}, \mathrm{t})$ $=\mathrm{U}(\mathrm{x})$ only... we used separation of $\mathrm{x}, \mathrm{t}$ variables to simplify $\Psi(\mathrm{x}, \mathrm{t})$ $=\psi(x) \phi(t) \&$ broke S. Eq. into two: one with $x$ only and another with $t$ only

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+U(x) \psi(x)=E \psi(x)
$$

$$
\Psi(x, t)=\psi(x) \phi(t)
$$

$$
i \hbar \frac{\partial \phi(t)}{\partial t}=E \phi(t)
$$

How to put Humpty-Dumpty back together ? e.g to say how to go from an expression of $\psi(\mathrm{x}) \rightarrow \Psi(\mathrm{x}, \mathrm{t})$ which describes time-evolution of the overall wave function

## Stationary State: Putting Humpty Dumpty Back Togather

Since $\frac{\mathrm{d}}{\mathrm{dt}}[\ln f(t)]=\frac{1}{f(t)} \frac{\mathrm{d} f(t)}{\mathrm{dt}}$
In $\mathrm{i} \hbar \frac{\partial \phi(t)}{\partial \mathrm{t}}=E \phi(t)$, rewrite as $\frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial \mathrm{t}}=\frac{E}{i \hbar}=-\frac{i E}{\hbar}$
and integrate both sides w.r.t. time
$\int_{t=0}^{t=t} \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial \mathrm{t}} d t=\int_{0}^{t}-\frac{i E}{\hbar} d t \Rightarrow \int_{0}^{t} \frac{1}{\phi(t)} \frac{\mathrm{d} \phi(t)}{\mathrm{dt}} d t=-\frac{i E}{\hbar}$
$\ln \phi(t)-\ln \phi(0)=-\frac{i E}{\hbar} t$, now exponentiate both sides
$\Rightarrow \phi(t)=\phi(0) e^{-\frac{i E}{\hbar} t} \quad ; \phi(0)=$ constant $=$ initial condition $=1(\mathrm{e} . \mathrm{g})$
$\Rightarrow \phi(t)=e^{-\frac{i E}{\hbar} t} \quad \&$ Thus $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) e^{-\frac{i E}{\hbar} t}$ where $\mathrm{E}=$ energy of system

## Schrodinger Eqn: Stationary State Form

$P(x, t)=\Psi^{*} \Psi=\psi^{*}(x) e^{+\frac{i E}{\hbar} t} \psi(x) e^{-\frac{i E}{\hbar} t}=\psi^{*}(x) \psi(x) e^{\frac{i E}{\hbar} t-\frac{i E}{\hbar} t}=|\psi(x)|^{2}$
In such cases, $\mathrm{P}(\mathrm{x}, \mathrm{t})$ is INDEPENDENT of time.
These are called "stationary" states because Prob is independent of time
Examples : Particle in a box (why?)
: Quantum Oscillator (why?)
Total energy of the system depends on the spatial orientation of the system : charteristic of the potential $U(x, t)$ !

The Case of a Rusty "Twisted Pair" of Naked Wires \& How Quantum Mechanics Saved ECE Majors !


- Twisted pair of Cu Wire (metal) in virgin form
- Does not stay that way for long in the atmosphere
-Gets oxidized in dry air quickly $\mathrm{Cu} \rightarrow \mathrm{Cu}_{2} \mathrm{O}$
- In wet air $\mathrm{Cu} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}$ (the green stuff on wires)
- Oxides or Hydride are non-conducting ..so no current can flow across the junction between two metal wires
- No current means no circuits $\rightarrow$ no EE, no ECE !!
- All ECE majors must now switch to Chemistry instead
 \& play with benzene !!! Bad news !




## Wave Function Across The Potential Barrier

In Region II of Potential U
TISE: $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{2 m}+U \psi(x)=E \psi(x)$
$\begin{aligned} \Rightarrow \frac{d^{2} \psi(x)}{d x^{2}} & =\frac{2 m}{\hbar^{2}}(U-E) \psi(x) \\ & =\alpha^{2} \psi(x)\end{aligned}$
with $\alpha^{2}=\frac{\sqrt{2 m(\mathrm{U}-\mathrm{E})}}{\hbar} ; \quad \mathrm{U}>\mathrm{E} \Rightarrow \alpha^{2}>0$
Solutions are of form $\psi(x) \propto e^{ \pm \alpha x}$

$$
\Psi_{I I}(x, t)=C e^{+\alpha x-i \omega t}+D e^{-\alpha x-i \omega t} \quad 0<\mathrm{x}<\mathrm{L}
$$

To determine $\mathrm{C} \& \mathrm{D} \Rightarrow$ apply matching cond.
$\Psi_{I I}(x, t)=$ continuous across barrier $(\mathrm{x}=0, \mathrm{~L})$


$$
\frac{d \Psi_{I I}(x, t)}{d x}=
$$

## Continuity Conditions Across Barrier

$$
\text { At } x=0, \text { continuity of } \psi(x) \Rightarrow
$$

$$
\mathrm{A}+\mathrm{B}=\mathrm{C}+\mathrm{D}
$$

At $\mathrm{x}=0$, continuity of $\frac{d \psi(\mathrm{x})}{d x} \Rightarrow$

$$
\begin{equation*}
i k A-i k B=\alpha C-\alpha D \tag{2}
\end{equation*}
$$

Similarly at $\mathrm{x}=\mathrm{L}$ continuity of $\psi(\mathrm{x}) \Rightarrow$

$$
\begin{equation*}
C e^{-\alpha L}+D e^{+\alpha L}=F e^{i k L} \tag{3}
\end{equation*}
$$

at $\mathrm{x}=\mathrm{L}$, continuity of $\frac{d \psi(\mathrm{x})}{d x} \Rightarrow$

$$
\begin{equation*}
-(\alpha \mathrm{C}) e^{-\alpha L}+(\alpha \mathrm{D}) e^{\alpha L}=i k F e^{i k L} \tag{4}
\end{equation*}
$$

Four equations \& four unknowns
Cant determine A,B,C,D but if you
Divide thruout by A in all 4 equations :

$\Rightarrow$ ratio of amplitudes $\rightarrow$ relations for $\mathrm{R} \& \mathrm{~T}$
That's what we need any way


Above equation holds only for $\mathrm{E}<\mathrm{U}$
For $\mathrm{E}>\mathrm{U}, \alpha=$ imaginary $\#$
$\operatorname{Sinh}(\alpha \mathrm{L})$ becomes oscillatory
This leads to an Oscillatory T(E) and
Transmission resonances occur where For some specific energy ONLY, $T(E)=1$ At other values of E , some particles are reflected back ..even though $\mathrm{E}>\mathrm{U}$ !!

That's the Wave nature of the
Quantum particle

## Ceparated in Coppertino

## Oxide layer <br> Wire \#1 <br> Wire \#2

Solved Example 6.1 (...that I made such a big deal about yesterday)
Q: 2 Cu wires are seperated by insulating Oxide layer. Modeling the Oxide
layer as a square barrier of height $\mathrm{U}=10.0 \mathrm{eV}$, estimate the transmission coeff
for an incident beam of electrons of $\mathrm{E}=7.0 \mathrm{eV}$ when the layer thickness is
(a) 5.0 nm (b) 1.0 nm

Q: If a 1.0 mA current in one of the intwined wires is incident on Oxide layer, how much of this current passes thru the Oxide layer on to the adjacent wire if the layer thickness is 1.0 nm What becomes of the remaining current?
$\mathrm{T}(\mathrm{E})=\left[1+\frac{1}{4}\left(\frac{U^{2}}{E(U-E)}\right) \sinh ^{2}(\alpha L)\right]^{-1} \quad \alpha=\frac{\sqrt{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}}{\hbar}, k=\frac{\sqrt{2 \mathrm{mE}}}{\hbar}$


## QM in 3 Dimensions



Quantum Mechanics In 3D: Particle in 3D Box


| The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates |  |
| :---: | :---: |
|  | Time Dependent Schrodinger Eqn: $\begin{gathered} -\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(x, y, z, t)+U(x, y, z) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, y, z, t)}{\partial t} \\ \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\ =\frac{\hbar^{2}}{2 m} \nabla^{2}=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial y^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial z^{2}}\right)=[K] \\ =\left[\mathrm{K}_{\mathrm{x}}\right] \quad+\quad\left[\mathrm{K}_{\mathrm{x}}\right]+\left[\mathrm{K}_{\mathrm{x}}\right] \end{gathered}$ <br> so $[H] \Psi(x, t)=[E\rceil \Psi(x, t)$ is still the Energy Conservation Eq |
|  | Stationary states are those for which all probabilities are constant in time and are given by the solution of the TDSE in seperable form: $\Psi(x, y, z, t)=\Psi(\vec{r}, t)=\psi(\overrightarrow{\mathrm{r}}) \mathrm{e}^{-\mathrm{i} \omega t}$ <br> This statement is simply an extension of what we derived in case of 1D time-independent potential |

Particle in 3D Rigid Box : Separation of Orthogonal Spatial ( $x, y, z$ ) Variables
TISE in 3D: $-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2} \psi(x, y, z)+U(x, y, z) \psi(x, y, z)=E \psi(x, y, z)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ independent of each other, write $\psi(x, y, z)=\psi_{1}(x) \psi_{2}(y) \psi_{3}(z)$
and substitute in the master TISE, after dividing thruout by $\psi=\psi_{1}(x) \psi_{2}(y) \psi_{3}(z)$ and noting that $\mathrm{U}(\mathrm{r})=0$ for $(0<\mathrm{x}, \mathrm{y}, \mathrm{z},<\mathrm{L}) \Rightarrow$
$\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{1}(x)} \frac{\partial^{2} \psi_{1}(x)}{\partial x^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{2}(y)} \frac{\partial^{2} \psi_{2}(y)}{\partial y^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{3}(z)} \frac{\partial^{2} \psi_{3}(z)}{\partial z^{2}}\right)=E=$ Const
This can only be true if each term is constant for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \Rightarrow$
$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{1}(x)}{\partial x^{2}}=E_{1} \psi_{1}(x) ;-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{2}(y)}{\partial y^{2}}=E_{2} \psi_{2}(y) ;-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{3}(z)}{\partial z^{2}}=E_{3} \psi_{3}(z)$
With $E_{1}+E_{2}+E_{3}=E=$ Constant (Total Energy of 3D system)
Each term looks like particle in 1D box (just a different dimension)
So wavefunctions must be like $\psi_{1}(x) \propto \sin k_{1} \mathrm{x}, \psi_{2}(y) \propto \sin k_{2} \mathrm{y}, \psi_{3}(z) \propto \sin k_{3} z$

## Particle in 3D Rigid Box: Separation of Orthogonal Variables

Wavefunctions are like $\psi_{1}(x) \propto \sin k_{1} \mathrm{x}, \psi_{2}(y) \propto \sin k_{2} \mathrm{y}, \psi_{3}(z) \propto \sin k_{3} z$
Continuity Conditions for $\psi_{\mathrm{i}}$ and its first spatial derivatives $\Rightarrow n_{i} \pi=k_{i} L$
Leads to usual Quantization of Linear Momentum $\overrightarrow{\mathrm{p}}=\hbar \overrightarrow{\mathrm{k}}$.....in 3D $p_{x}=\left(\frac{\pi \hbar}{L}\right) n_{1} ; p_{y}=\left(\frac{\pi \hbar}{L}\right) n_{2} ; p_{z}=\left(\frac{\pi \hbar}{L}\right) n_{3}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}=1,2,3, . . \infty\right)$

Note: by usual Uncertainty Principle argument neither of $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}=0$ ! (why?)
Particle Energy $\mathrm{E}=\mathrm{K}+\mathrm{U}=\mathrm{K}+0=\frac{1}{2 \mathrm{~m}}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)$
Energy is again quantized and brought to you by integers $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$ (independent) and $\psi(\overrightarrow{\mathrm{r}})=\mathrm{A} \sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z \quad(\mathrm{~A}=$ Overall Normalization Constant $)$
$\Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\psi(\overrightarrow{\mathrm{r}}) \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{\hbar} t}=A\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{} t}$

## Particle in 3D Box :Wave function Normalization Condition

$\Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\psi(\overrightarrow{\mathrm{r}}) \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{\hbar} t}=A\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{\hbar} t}$
$\Psi^{*}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\psi^{*}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{\mathrm{i} \frac{\mathrm{E}}{\hbar} t}=A\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{\mathrm{i} \frac{\mathrm{E}}{\hbar} t}$
$\Psi^{*}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=A^{2}\left[\sin ^{2} k_{1} \mathrm{x} \sin ^{2} k_{2} \mathrm{y} \sin ^{2} k_{3} z\right]$
Normalization Condition : $1=\iiint_{x, y, z} P(r) d x d y d z \Rightarrow$
$1=A^{2} \int_{\mathrm{x}=0}^{\mathrm{L}} \sin ^{2} k_{1} \mathrm{x} d \mathrm{x} \int_{\mathrm{y}=0}^{\mathrm{L}} \sin ^{2} k_{2} \mathrm{y}$ dy $\int_{\mathrm{z}=0}^{\mathrm{L}} \sin ^{2} k_{3} \mathrm{z} d \mathrm{z}=A^{2}\left(\sqrt{\frac{L}{2}}\right)\left(\sqrt{\frac{L}{2}}\right)\left(\sqrt{\frac{L}{2}}\right)$
$\Rightarrow A=\left[\frac{2}{L}\right]^{\frac{3}{2}}$ and $\Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\left[\frac{2}{L}\right]^{\frac{3}{2}}\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{-\mathrm{E} \frac{\mathrm{E}}{\hbar} t}$

## Particle in 3D Box : Energy Spectrum \& Degeneracy

$\mathrm{E}_{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right) ; \mathrm{n}_{\mathrm{i}}=1,2,3 \ldots \infty, n_{i} \neq 0$
Ground State Energy $\mathrm{E}_{111}=\frac{3 \pi^{2} \hbar^{2}}{2 m L^{2}}$
Next level $\Rightarrow 3$ Excited states $\mathrm{E}_{211}=\mathrm{E}_{121}=\mathrm{E}_{112}=\frac{6 \pi^{2} \hbar^{2}}{2 m L^{2}}$
Different configurations of $\psi(\mathrm{r})=\psi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ have same energy $\Rightarrow$ degeneracy


