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Measurement Expectation: Statistics Lesson

* Ensemble & probable outcome of a single measurement or the
average outcome of a large # of measurements
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Particle in the Box, n=1, find <x> & Ax ?
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AX=20% of L, Particle not sharply confined in Box

Expectation Values & Operators: More Formally

* Observable: Any particle property that can be measured
— X,P, KE, E or some combination of them,e,g: x2
— How to calculate the probable value of these quantities for a QM state ?

* Operator: Associates an operator with each observable
— Using these Operators, one calculates the average value of that Observable

— The Operator acts on the Wavefunction (Operand) & extracts info about the
Observable in a straightforward way—> gets Expectation value for that
observable




Table 5.2 Common Observables and

Associated Operators

Associated
Observable Symbol Operator
position x X
h oo
momentum p . —
) 1 0x
potential energy U U(x)
K h2 92
. t' K — — e—
inetic energy om 922
h 1 h2 92
iltoni H —— — + U
amiltonian 9 92 (x)
., 0
total energy E th Py

Plug & play form

Operators = Information Extractors

[plorp= E di Momentum Operator
i dx

gives the value of average mometum in the following way:

== [y 0P @ = [¥'®) (h ]%d"

i

Similerly :
N h2 2
[K]orK = om gives the value of average KE
T E n dw(x)
<K> —_£ v LKy (x)dx = j v (x)[—% o |

Similerly

<U>= J. v (XU (x)w(x)dx :plug in the U(x) fn for that case

BARRTC)
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and <E> =Tt//*(x)[K +U (X)W (x)dx = f y/*(x)[

Hamiltonian Operator [[H] = [K] +[U]

The Energy Operator| [E] = ih% informs you of the average energy

+U(x) jdx




[H] & [E] Operators

[H] is a function of x
[E] is a function of't they are really different operators

But they produce identical results when applied to any solution of
the time-dependent Schrodinger Eq.

[H]W(x,t) = [E] W(x,t)

/A ., 0 )
[ pyEw 1‘)}1’(){ = I:lhg}?’(,x,t)

Think of S. Eq as an expression for Energy conservation for a
Quantum system

Where do Operators come from ? A touchy-feely answer

Example:[ p] The momentum Extractor (operator):

Consider as an example: Free Particle Wavefunction

W)= A k=T gty oP
A p h
5w
rewrite W(x,t) = Ae G, a\ng b _ z A o l—‘P(x t)
X

= [ﬁi} Y (x,t) =p Y (x,)
ox
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So it is not unreasonable to associate [p]=[z—} with observable p
1 dx




Example: Average Momentum of Particle in Rigid
Box
* Given the symmetry of the 1D box, we argued last time that <p>=0
: now some inglorious math to prove it !

— Be lazy, when you can get away with a symmetry argument to solve a
problem..do it & avoid the evil integration & algebra.....but be sure!
isin(%.\‘) & v (x)= jﬂ

2 . nw
v, (x)= 7 sm(‘T X)

T T o hd
<p>= J!// [p]l//d.\':'[l// {TZ}WZX
h2nm nmw nmw
< p>=———| sin(—x)cos(—x)dx
P=51ttr ! (7 Deosy

. . 1 ., nrw
Since Jsmax cosax dx = —sin“ ax ...herea= —
2a L

x=L
=< p>= %[sin2 (Ex} =0 since Sin*(0) = Sin’(n7) =0
1 x=0

We knew THAT before doing any math !

Quiz 1: What is the <p> for the Quantum Oscillator in its symmetric ground state

Quiz 2: What is the <p> for the Quantum Oscillator in its asymmetric first excited state

But what about the <KE> of the Particle in Box ?

< p >=0 so what about expectation value of K=2—‘?
m

< K >=0 because < p >=0; clearly not, since we showed E=KE # 0
Why ? What gives ?

nrh .
Because p, =+,/2mE, = iT; "+" is the key!

The AVERAGE p =0, since particle is moving back & forth

2 <2>
<KE>=<2 > #0; not P !

2m

Be careful when being "lazy"

Quiz: what about <KE> of a quantum Oscillator?

Does similar logic apply??




Schrodinger Eqgn: Stationary State Form

» Recall=> when potential does not depend on time explicitly U(x,t)
=U(x) only...we used separation of x,t variables to simplify ¥(x,t)
= Y(x) 0(t) & broke S. Eq. into two: one with x only and another
with t only

POV Loy ()= F wx)

2m  9°x Y(x,t) =y (x)o()

a¢(t) = E(r)

How to put Humpty-Dumpty back together ? e.g to say how to
go from an expression of y(x)—"¥(x,t) which describes

time-evolution of the overall wave function

Stationary State: Putting Humpty Dumpty Back Togather
1 dr @)

f(@) dt
L 90 _E_
= E@(t) , rewrite as o0 ot pm

and integrate both sides w.r.t. time

L Lo, i

d ,
Since " [In f(1)]

I 7200
ot

o O() dt h

Ing(t)—In¢(0) = —%t , now exponentiate both sides
{

iE
=0()=0¢0)e " ; ¢(0) = constant= initial condition = 1 (e.g)
IE iE
=¢()=e " & Thus Y(x,t)=y(x)e " where E = energy of system




Schrodinger Eqgn: Stationary State Form

iE iE iE iE
P,)=¥¥=y () e "y e " =y (e’ " =y
In such cases, P(x,t) is INDEPENDENT of time.
These are called "stationary" states because Prob is independent of time
Examples : Particle in a box (why?)
: Quantum Oscillator (why?)
Total energy of the system depends on the spatial orientation
of the system : charteristic of the potential U(x,t) !

The Case of a Rusty “Twisted Pair” of Naked Wires
& How Quantum Mechanics Saved ECE Majors !

Oxide layer AA

Wire #1 Wire #2

» Twisted pair of Cu Wire (metal) in virgin form A
* Does not stay that way for long in the atmosphere

*Gets oxidized in dry air quickly Cu = Cu,O

In wet air Cu 2 Cu(OH), (the green stuff on wires) ( ((
* Oxides or Hydride are non-conducting ..so no current can flow

across the junction between two metal wires
e No current means no circuits = no EE, no ECE !!
* All ECE majors must now switch to Chemistry instead

& play with benzene !!! Bad news !




Potential Barrier

Transmitted o

X N

»

Consider George as a “free Particle/Wave” with Energy E incident from Left
Free particle are under no Force; have wavefunctions like

Y= A eilkx-wt) or B gilkx-wi)

Tunneling Through A Potential Barrier

Region III

Prob ‘7




Beam Of Particles With E < U Incident On Barrier From Left
Region IIl

U

Incident Beam - A - F
Reflected Beam _ B Transmitted Beam
X

0 L
Description Of WaveFunctions in Various regions: Simple Ones first

In Region T: ¥,(x,t) = 4¢'* ™ + Be' """ = incident + reflected Waves

272
withE=hto=hk
2m

_ B
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In Region ITl: ¥, (x,£) = Fe'™™ ™ + Ge' ™) = transmitted

define Reflection Coefficient : = frac of incident wave intensity reflected back

Note : Ge' ™™ corresponds to wave incident from right !

This piece does not exist in the scattering picture we are thinking of now (G=0)

_ P
AF

Unitarity Condition = R+ T=1 (particle is either reflected or transmitted)

So W\, (x,1) = Fe'"™* represents transmitted beam. Define

Wave Function Across The Potential Barrier

(m::(ic,;l:) (transmitted)
—_— ikx
reflected) Fe*

Be—lkx




Continuity Conditions Across Barrier
At x =0, continuity of y(x) =
A+B=C+D (1)

At x =0, continuity of % =
x

lkA - lkB = C - OtD (2) (in;ic&c:,t) St (transmitted)
Similarly at x=L continuity of v (x) = (f"‘l‘;‘:f;‘;d)h gt
Ce™™ + De™™ = Fe™ 3)

at x=L, continuity of % =
x

-(aC)e ™+ (aD)e™" =ikFe™ (4)
Four equations & four unknowns
Cant determine A,B,C,D but if you
Divide thruout by A in all 4 equations :
= ratio of amplitudes — relations for R & T
That's what we need any way

Potential Barrier when E < U

Above equation holds only for E <U

T For E>U, a=imaginary#
A ﬂ. Sinh(oL) becomes oscillatory
1|----- "~ BISE This leads to an Oscillatory T(E) and
Transmission resonances occur where
Genera W

For some specific energy ONLY, T(E) =1
At other values of E, some particles are
—-F reflected back ..even though E>U !!
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That’s the Wave nature of the
Quantum particle
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Ceparated in Coppertino

Oxide layer

Wire #1 Wire #2

2m(U-E 2mE
T(E) = | 1+~| ——— |sinh*(arL) a=Jm; ),kd;“
4| EU-E)

Oxide layer

Wire #1 Wire #2

1 mA current =I= = N=6.25x10" electrons

Q=Ngq,
t
N, =# of electrons that escape to the adjacent wire (past oxide layer)

N, = N.I'=(6.25%10" electrons)x; Oxide thickness makes all the difference !
For L=10 A, T=0.657x10" = N, =4.11x10 = [7, = 65.7 pA|! That’s why from time-to-time one needs to

Scrape off the green stuff off the naked wires

Current Measured on the first wire is sum of incident+reflected currents
and current measured on "adjacent" wire is the L

11



QM in 3 Dimensions

Learn to extend S. Eq and its
solutions from “toy” examples
in 1-Dimension (x) — three
orthogonal dimensions (r=
X,y,2)

r=ix+ jy+kz
Then transform the Systems
— Particle in 1D rigid box = 3D
rigid box
— 1D Harmonic Oscillator > 3D
Harmonic Oscillator
» Keep an eye on the number
of different integers needed
to specify system 1> 3
(corresponding to 3
available degrees of freedom
X,Y,Z)

|t,b |2 $ Energy
3
25 E,
2
hed 16 E,
g 9E
o ? 4 E:
E,
L 0 L
Position
4
&,
>
y
X

Quantum Mechanics In 3D: Particle in 3D Box

AZ

Location of particle in 3d Box

Momentum

Kinetic Energy, Total Energy
Expectation values in 3D

\a® To find the Wavefunction and various
expectation values, we must first set up

—> Y

U(r)=0 for (0<x,y,z,<L)

Ask same questions:

the appropriate TDSE & TISE




The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates

Time Dependent Schrodinger Eqn:

2
—h—Vz‘P(x,y,z,t) +U(x,y,2)¥(x,t)= ihM ..... In3D
2m ot
2 2 2
V? =a—2+a—2+a—2
4, ' dy dz
2 2 2 2 2 2 2
o So _ivzz_h az +_h az +_h az =[K]
& N 2m 2m ox 2m dy 2m oz
y = K] + K] + [K]

so [H]¥(x,t)=[ET¥(x,?) is still the Energy Conservation Eq

Stationary states are those for which all probabilities are constant in time

and are given by the solution of the TDSE in seperable form:
P(x,y,2,t) = P(F,1) =y (T)e'™

This statement is simply an extension of what we derived in case of 1D

time-independent potential

Particle in 3D Rigid Box : Separation of Orthogonal Spatial (x,y,z) Variables

2

TISE in 3D: - c
2m

X,y,z independent of each other , write y(x, y,z) =y, (xX)y,(»)v;(2)

Vi (x,y,2)+U(x,y, 2y (x,y,2) = Ey(x, y,2)

and substitute in the master TISE, after dividing thruout byy =y, (x)¥, (»)y,(2)
and noting that U(r)=0 for (0<x,y,z,<L) =

2 2 2 2 2 5
1 allfl(X)]Jr . aWz(y)]+[_h ! a%(Z)J:E:Const

%l]/1 (x) ox’ m v,(») ﬁq&(z) dz°
This can only be true if each term is constant for all X,y,z =
1 9%y, (x n 9’ 'y, (z
“om g/;:z( ) =Ey,(x); o la//;z(y) =Ew,(»)}; “om 151232( ) =Ey,(2)

With |E1 + E, + E, = E=Constant | (Total Energy of 3D system)

Each term looks like particle in 1D box (just a different dimension)

So wavefunctions must be like |y, (x) < sin kx|, () < sin k,y ||y (2) o< sin k2|
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Particle in 3D Rigid Box : Separation of Orthogonal Variables

Wavefunctions are like |l//1 (x) o< sin le| ,|l//2 () e sink,y

Y, (2) o< sinkz|

5

Continuity Conditions for y, and its first spatial derivatives =

Leads to usual Quantization of Linear Momentum ﬁ=hE ..... in 3D

wh wh wh
pxz(Tjnl ; py:(T]nz ; pzz(Tjn3 (n,,n,,n, =1,2,3,..00)

Note: by usual Uncertainty Principle argument neither of n,,n,,n, =0! (why?)

n'h’

. 1 >
Particle Energy E = K+U =K +0 = E(pf +p,+ p)= W(nl2 +n +n])

Energy is again quantized and brought to you by integers n,,n,,n, (independent)

and y(r)=Asinkxsink,ysink;z (A = Overall Normalization Constant)

E

. NE
Y(r,t)=y (7) e =4 [sinkxsink,ysink,z] e "

Particle in 3D Box :\Wave function Normalization Condition

8E
1—t

12 ;
Y(Et)=y(r)e " =|A4 [sinkxsink,ysinkz]e

.E
=i

g
¥ (Et=y () e" =|A[sinkxsink,ysink,z]e”
¥ (E)W(T,t)=A" [sin” kxsin® k,ysin® k,z]
Normalization Condition : 1 = JﬂP(r)dx dydz =

X,y,Z
L L L
L L L
1=4> |sin’kxdx |sin’kyd sin’ k,z dz =4 \/: — —
XJ.O l ;J‘o 2y y ZIO } 2 2 2
3 3

E

= A= [%T and |\ (1,t)= [%T [sinkxsink,ysink,z] e_igt
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252
Th 2 2 D3\
s :—2mL2 (n, +n5+n;); n, =1,2,3..00,n, #0

3nh?

Ground State Energy E,,, = W
. _ 6m’h?
Next level = 3 Excited states E,;,,=E,,, =E,,, = e

Different configurations of y (r)=y (x,y,z) have same energy = degeneracy

AZ

Z=

&),

y=L ¥

X=
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