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Physics 2D Lecture  Slides
Lecture 25: March 1st 2005

Vivek Sharma
UCSD Physics

Measurement Expectation: Statistics Lesson
• Ensemble & probable outcome of a single measurement or the

average outcome of a large # of measurements

1 1 2 2 3 3 1

1 2 3

1

*

( )
....

...
( )

For a general Fn f(x)

( ( ) ( ) ( )

( )

)

( )

n

i i

i i i

i

n

i i

i

xP x dxn x
n x n x n x n x

x
n n n n N

P x dx

n f x

f x
N

x f x x dx

P x dx

! !

"

= #"
"

#

"

#"
"

#"

"

=

+ + +
< >= = =

+ + +

< >= =

$ %

%

%$

%
2

i

2 2

Sharpness of a distribution

= scatter around the average

(x )
=

=  ( ) ( )

= small Sharp distr.

Uncertainty X 

:

= 

!

!

"

#

$ x

N

x x

%

%

%

%



  

 2

Particle in the Box, n=1, find <x> &  Δx ?
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Expectation Values & Operators: More Formally
• Observable: Any particle property that can be measured

– X,P, KE, E or some combination of them,e,g: x2

– How to calculate the probable value of these quantities for a QM state ?
• Operator: Associates an operator with each observable

– Using these Operators, one calculates the average value of that Observable
– The Operator acts on the Wavefunction (Operand) & extracts info about the

Observable in a straightforward way gets Expectation value for that
observable
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Operators  Information Extractors
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[H] & [E] Operators
• [H] is a function of x
• [E] is a function of t …….they are really different operators
• But they produce identical results when applied to any solution of

the time-dependent Schrodinger Eq.

•  [H]Ψ(x,t) = [E] Ψ(x,t)

• Think of S. Eq as an expression for Energy conservation for a
Quantum system
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Example: Average Momentum of Particle in Rigid
Box

• Given the symmetry of the 1D box, we argued last time that <p> = 0
: now some inglorious math to prove it !
– Be lazy, when you can get away with a symmetry argument to solve a

problem..do it & avoid the evil integration & algebra…..but be sure!
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Schrodinger Eqn: Stationary State Form

• Recall when potential does not depend on time explicitly U(x,t)
=U(x) only…we used separation of x,t variables to simplify Ψ(x,t)
=  ψ(x) φ(t) & broke S. Eq. into two: one with x only and another
with t only
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Schrodinger Eqn: Stationary State Form

* * * 2

In such cases, P(x,t) is INDEPENDENT of time.

These are called "stationary" states

( , ) ( ) ( ) (

 because Prob is independent of tim
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Total energy of the system depends on the spatial o
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                     : Quantum Os
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cill
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l U(x,t) !

The Case of a Rusty “Twisted Pair” of Naked Wires
& How Quantum Mechanics Saved ECE Majors !

• Twisted pair of Cu Wire (metal) in virgin form
• Does not stay that way for long in the atmosphere

•Gets oxidized in dry air quickly Cu Cu2O
•In wet air Cu  Cu(OH)2 (the green stuff on wires)

• Oxides or Hydride are non-conducting ..so no current can flow  
      across the junction between two metal wires
• No current means no circuits  no EE, no ECE !!
• All ECE majors must now switch to Chemistry instead  

     & play with benzene !!! Bad news !  

Oxide layer

Wire #1 Wire #2
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Potential Barrier

U

E<U
Transmitted? 

             Description of Potential
U = 0      x <  0                     (Region I ) 
U = U     0 < x < L                (Region II) 
U = 0      x > L                       (Region III)

Consider George as a “free Particle/Wave” with Energy E  incident from Left
Free particle are under no Force; have wavefunctions like  

                                     Ψ= A ei(kx-wt) or B ei(-kx-wt) 

x

Tunneling Through A Potential Barrier

•Classical & Quantum Pictures compared: When E>U & when E<U
•Classically , an particle or a beam of particles incident from left
encounters barrier:

•when E > U  Particle just goes over the barrier (gets transmitted )
•When E<U  particle is stuck in region I, gets entirely reflected,
no transmission (T)

•What happens in a Quantum Mechanical barrier ? No region is
inaccessible for particle since the potential is (sometimes small) but
finite

U

E<U  Prob ?
Region I

II

Region III
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Beam Of Particles  With E < U Incident On Barrier From Left
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Continuity Conditions Across Barrier

(x)
At x = 0 , continuity of  

        

 At x = 0 , continuity of (x) 
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Potential Barrier when E < U

1
2

2

Depends on barrier Height U, barrier Width L and particle 

1
T(E) = 1+ sinh ( )

4 ( )

Expression for Transmissi

Energy E

            ;   

and       R(E)=1- T(E)..

on Coeff T=T(E) : 

2 ( )U E

E

m U
L

E U
!!

"
# $% &
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.......what's not transmitted is reflected

Above equation holds only for E < U
For E>U, α=imaginary# 

   Sinh(αL) becomes oscillatory
This leads to an Oscillatory T(E) and 
Transmission resonances occur where

For some specific energy ONLY, T(E) =1
At other values of E, some particles are 

reflected back ..even though E>U !!

That’s the Wave nature of the 
Quantum particle  

General Solutions for R & T: 
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Ceparated in Coppertino

Q: 2 Cu wires are seperated by insulating Oxide layer. Modeling the

Solved Example 6.1 (...that I made such a big deal about yesterday)

 Oxide

layer as a square barrier of height U=10.0eV, estimate the transmission coeff

for an incident beam of electrons of E=7.0 eV when the layer thickness is 

(a) 5.0 nm (b) 1.0nm 

Q: If a 1.0 mA current in one of the intwined wires is incident on Oxide layer, how much of

this current passes thru the Oxide layer on to the adjacent wire if the layer thickness is 1.0nm?

What becomes of the remaining current? 

1
2

21
T(E) = 1+ sinh ( )
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U
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E U E
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2m(U-E) 2mE
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Oxide layer

Wire #1 Wire #2
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2
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2 3
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2

2 ( ) 2 511 / (3.0 10 )
0.8875A

Substitute in expression for T=T(E)

1
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Use =1.973 keV.A/c , m 511 keV/c
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1 10
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Reducing barrier 

A

width by 5 leads to Trans. Coeff enhancement by 31 

orders of ma

nh (0.8875 ) 0.963 10 ( )!!

However, for L=10A;  T=0.657 1

gnitude !!
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T

Q=Nq
1 mA current =I=  =6.25 10

t

N =# of electrons that escape to the adjacent wire (past

T ;  

For L=10

 oxide

 A, 

 layer)

N . (6.25 10 )

N 4.11 10 65.7T=0.657 1 !!

Cur en

0

r

T

N electrons

electrons

I

N

pA

T

! "

=

"

= " "

= " ! =!!

T

t Measured on the first wire is sum of incident+reflected currents

and current measured on "adjacent" wire is the I  

Oxide layer

Wire #1 Wire #2

Oxide thickness makes all the difference !
That’s why from time-to-time one needs to
Scrape off the green stuff off the naked wires
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• Learn to extend S. Eq and its
solutions from “toy” examples
in 1-Dimension (x) → three
orthogonal dimensions (r ≡
x,y,z)

• Then transform the systems
– Particle in 1D rigid box  3D

rigid box
– 1D Harmonic Oscillator  3D

Harmonic Oscillator
• Keep an eye on the number

of different integers needed
to specify system 1 3
(corresponding to 3
available degrees of freedom
x,y,z)

QM in 3 Dimensions

y

z

x

ˆˆ ˆr ix jy kz= + +
!

Quantum Mechanics In 3D: Particle in 3D Box
Extension of a Particle In a Box with rigid walls
         1D →  3D
⇒    Box with Rigid Walls (U=∞) in 
        X,Y,Z dimensions 

y
y=0

y=L

z=L

z

x

Ask same questions:
• Location of particle in 3d Box
• Momentum 
• Kinetic Energy, Total Energy
• Expectation values in 3D

To find the Wavefunction and various
expectation values, we must first set up
the appropriate TDSE & TISE

U(r)=0 for (0<x,y,z,<L)
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The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates
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Particle in 3D Rigid Box : Separation of Orthogonal Variables

1 1 2 2 3 3

i

Wavefunctions are like  , ( ) sin

Continuity Conditions for  and its fi

( ) sin y

Leads to usual Quantization of Linear Momentum p= k .....in 3D
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Particle in 3D Box :Wave function Normalization Condition
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Particle in 3D Box : Energy Spectrum & Degeneracy
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