

Physics 2D Lecture Slides Lecture 8 : Jan 18th 2005

Vivek Sharma
UCSD Physics

Relativistic Momentum and Revised Newton's Laws

Need to generalize the laws of Mechanics \& Newton to confirm to Lorentz Transform and the Special theory of relativity: Example : $\vec{p}=m \vec{u}$

Nature of Relativistic Momentum

Linear Particle Accelerator : 50 GigaVolts Accelating Potential

Charged Form of Matter \& Anti-Matter in a B Field

Accelerating Electrons Thru RF Cavities

Inside A Circular Particle Accelerator Tunnel : Monorail !

Test of Relativistic Momentum In Circular Accelerator

Relativistic Work Done \& Change in Energy

$$
W=\int_{x_{1}}^{x_{2}} \vec{F} \cdot d \vec{x}=\int_{x_{1}}^{x_{2}} \frac{d \vec{p}}{d t} \cdot d \vec{x}
$$

$$
p=\frac{m u}{\sqrt{1-\frac{u^{2}}{c^{2}}}} \quad \therefore \frac{d \vec{p}}{d t}=\frac{m \frac{d u}{d t}}{\left[1-\frac{u^{2}}{c^{2}}\right]^{3 / 2}}
$$

substitute in W,

$$
\therefore \quad W=\int_{0}^{u} \frac{m \frac{d u}{d t} u d t}{\left[1-\frac{u^{2}}{c^{2}}\right]^{3 / 2}} \quad(\text { change in var } \mathrm{x} \rightarrow \mathrm{u})
$$

Relativistic Work Done \& Change in Energy

$X_{2}, u=u$

$$
\begin{aligned}
W & =\int_{0}^{u} \frac{m u d u}{\left[1-\frac{u^{2}}{c^{2}}\right]^{3 / 2}}=\frac{m c^{2}}{\left[1-\frac{u^{2}}{c^{2}}\right]^{1 / 2}}-m c^{2} \\
& =\gamma m c^{2}-m c^{2}
\end{aligned}
$$

Work done is change in energy (KE in this case)

$$
\mathrm{K}=\gamma m c^{2}-m c^{2} \text { or Total Energy } \mathrm{E}=\gamma m c^{2}=K+m c^{2}
$$

But Professor... Why Can's ANYTHING go faster than light?

$K=\frac{m c^{2}}{\left[1-\frac{u^{2}}{c^{2}}\right]^{1 / 2}}-m c^{2} \Rightarrow\left(K+m c^{2}\right)^{2}=\left(\frac{m c^{2}}{\left[1-\frac{u^{2}}{c^{2}}\right]^{1 / 2}}\right)^{2}$
$\Rightarrow\left[1-\frac{u^{2}}{c^{2}}\right]=m^{2} c^{4}\left[K+m c^{2}\right]^{-2}$
$\Rightarrow u=c \sqrt{1-\left(\frac{K}{m c^{2}}+1\right)^{-2}} \quad$ (Parabolic in $\left.\mathrm{u} \mathrm{Vs} \frac{K}{m c^{2}}\right)$
As K $\rightarrow \infty \quad, \mathrm{u} \rightarrow \mathrm{c}$

Non-relativistic case: $\mathrm{K}=\frac{1}{2} m u^{2} \Rightarrow u=\sqrt{\frac{2 K}{m}}$

Relativistic Kinetic Energy Vs Velocity

A Digression: How to Handle Large/Small Numbers

- Example: consider very energetic particle with very large Energy E

$$
\gamma=\frac{E}{m c^{2}}=\frac{m c^{2}+K}{m c^{2}}=1+\frac{K}{m c^{2}}
$$

- Lets Say $\gamma=3 \times 10^{11}$, Now calculate u from $\rightarrow \frac{u}{c}=\left[1-\frac{1}{\gamma^{2}}\right]^{1 / 2}$
- Try this on your el-cheapo calculator, you will get $\mathrm{u} / \mathrm{c}=1, \mathrm{u}=\mathrm{c}$ due to limited precision.
- In fact $\mathrm{u} \cong \mathrm{c}$ but not exactly!, try to get this analytically
$\gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{(1-\beta)(1+\beta)}}$
Since $\beta=\frac{\mathrm{u}}{\mathrm{c}} \cong 1,1+\beta=2$
$\gamma \approx \frac{1}{\sqrt{2} \sqrt{1-\beta}}$
$\Rightarrow 1-\beta=\frac{1}{2 \gamma^{2}}=5 \times 10^{-24}, \quad u=\beta c$
$\Rightarrow u=0.999999999999999999999$ 995c !!
Such particles are routinely produced in violent cosmic collisions

When Electron Goes Fast it Gets "Fat"

Total Energy $\mathrm{E}=\gamma m c^{2}=K+m c^{2}$

$E=\underbrace{\gamma m} c^{2}$
As $\frac{\mathrm{v}}{\mathrm{c}} \rightarrow 1, \quad \gamma \rightarrow \infty$
Apparent Mass approaches ∞

New Concept
Rest Mass = particle mass when its at rest

Relativistic Kinetic Energy \& Newtonian Physics

Relativistic $\mathrm{KE} \quad \mathrm{K}=\gamma m c^{2}-m c^{2}$
$\left[\begin{array}{l}\text { Remember Binomial Theorem } \\ \text { for } \mathrm{x} \ll 1 ; \quad(1+\mathrm{x})^{\mathrm{n}}=\left(1+\frac{\mathrm{nx}}{1!}+\frac{\mathrm{n}(\mathrm{n}-1)}{2!} \mathrm{x}^{2}+\text { smaller terms }\right)\end{array}\right]$
\therefore When $u \ll c,\left[1-\frac{u^{2}}{c^{2}}\right]^{-\frac{1}{2}} \cong 1+\frac{1}{2} \frac{u^{2}}{c^{2}}+\ldots$ smaller terms
so $K \cong m c^{2}\left[1+\frac{1}{2} \frac{u^{2}}{c^{2}}\right]-m c^{2}=\frac{1}{2} m u^{2} \quad$ (classical form recovered)

Total Energy of a Particle $E=\gamma m c^{2}=K E+m c^{2}$
For a particle at rest, $u=0 \Rightarrow$ Total Energy $\mathrm{E}=\mathrm{mc}^{2}$

$\mathrm{E}=\mathrm{mc}^{2} \Rightarrow$ Sunshine Won't Be Forever!

Q: Solar Energy reaches earth at rate of 1.4 kW per square meter of surface perpendicular to the direction of the sun. by how much does the mass of sun decrease per second owing to energy loss? The mean radius of the Earth's orbit is $1.5 \times 10^{11} \mathrm{~m}$.

- Surface area of a sphere of radius r is $A=4 \pi r^{2}$
- Total Power radiated by Sun = power received by a sphere whose radius is equal to earth's orbit radius

So Sun loses $\mathrm{E}=4.0 \times 10^{26} \mathrm{~J}$ of rest energy per second
Its mass decreases by $\mathrm{m}=\frac{\mathrm{E}}{\mathrm{c}^{2}}=\frac{4.0 \times 10^{26} \mathrm{~J}}{\left(3.0 \times 10^{8}\right)^{2}}=4.4 \times 10^{9} \mathrm{~kg}$ per sec !!
If the Sun's Mass $=2.0 \times 10^{30} \mathrm{~kg}$ So how long with the Sun last ?
One day the sun will be gone and the solar system will not be a hospitable place for life

$$
\begin{aligned}
& E=\gamma m c^{2} \Rightarrow E^{2}=\gamma^{2} m^{2} c^{4} \quad \text { Relationship between } \mathrm{P} \text { and } \mathrm{E} \\
& \equiv p=\gamma m u \\
& \Rightarrow E^{2}-p^{2} c^{2}=\gamma^{2} m^{2} m^{2} c^{4}-\gamma^{2} m^{2} m^{2} c^{2} u^{2} c^{2}=\gamma^{2} m^{2} c^{2}\left(c^{2}-u^{2}\right) \\
&=\frac{m^{2} c^{2}}{1-\frac{u^{2}}{c^{2}}}\left(c^{2}-u^{2}\right)=\frac{m^{2} c^{4}}{c^{2}-u^{2}}\left(c^{2}-u^{2}\right)=m^{2} c^{4} \\
& E^{2}=p^{2} c^{2}+\left(m c^{2}\right)^{2} . \ldots . . . \text { important relation }
\end{aligned}
$$

For particles with zero rest mass like photon (EM waves)

$$
\mathrm{E}=\mathrm{pc} \text { or } \mathrm{p}=\frac{\mathrm{E}}{\mathrm{c}} \quad \text { (light has momentum!) }
$$

Relativistic Invariance : $E^{2}-p^{2} c^{2}=m^{2} c^{4}$: In all Ref Frames
Rest Mass is a "finger print" of the particle

Mass Can "Morph" into Energy \& Vice Verca

- In Newtonian mechanics: mass and energy separate concepts
- In relativistic physics: Mass and Energy are the same thing !
- New word/concept : MassEnergy, just like SpaceTime
- It is the mass-energy that is always conserved in every reaction : Before \& After a reaction has happened
- Like squeezing a balloon : Squeeze here, it grows elsewhere
- If you "squeeze" mass, it becomes (kinetic) energy \& vice verca!
- CONVERSION FACTOR = \mathbf{C}^{2}
- This exchange rate never changes !

Mass is Energy, Energy is Mass : Mass-Energy Conservation

Examine Kinetic energy Before and After Inelastic Collision: Conserved?

Kinetic energy has been transformed into mass increase

$$
\Delta M=M-2 m=\frac{2 K}{c^{2}}=\frac{2}{c^{2}}\left(\frac{m c^{2}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}-m c^{2}\right)
$$

Creation and Annihilation of Particles

Sequence of events in a matter-antimatter collision:

$$
\mathrm{e}^{+}+e^{-} \rightarrow \gamma \rightarrow \mu^{+}+\mu^{-}
$$

Relativistic Kinematics of Subatomic Particles
 Reconstructing Decay of a π Meson

The decay of a stationary $\pi^{+} \rightarrow \mu^{+} v$ happens quickly,

v is invisible, has $\mathrm{m} \cong 0 ; \mu^{+}$leaves a trace in a B fiel
μ^{+}mass $=106 \mathrm{MeV} / \mathrm{c}^{2}, \mathrm{KE}=4.6 \mathrm{MeV}$
What was mass of the fleeting π^{+}?
Energy Conservation:
$\mathrm{E}_{\pi}=E_{\mu}+E_{v} \Rightarrow \mathrm{~m}_{\pi} c^{2}=\sqrt{\left(m_{\mu} c^{2}\right)^{2}+p_{\mu}^{2} c^{2}}+p_{v} c$
Momentum Conservation: $p_{\mu}=p_{v}$
$\Rightarrow m_{\pi} c^{2}=\sqrt{\left(m_{\mu} c^{2}\right)^{2}+p_{\mu}^{2} c^{2}}+p_{\mu} c$

Relativistic Kinematics of Subatomic Particles

Energy Conservation:
$\mathrm{E}_{\pi}=E_{\mu}+E_{v} \Rightarrow \mathrm{~m}_{\pi} c^{2}=\sqrt{\left(m_{\mu} c^{2}\right)^{2}+p_{\mu}^{2} c^{2}}+p_{v} c$

Momentum Conservation: $p_{\mu}=p_{v}$
$\Rightarrow m_{\pi} c^{2}=\sqrt{\left(m_{\mu} c^{2}\right)^{2}+p_{\mu}^{2} c^{2}}+p_{\mu} c$
also $p_{\mu}^{2} c^{2}=E_{\mu}^{2}-\left(m_{\mu} c^{2}\right)^{2}=\left(K_{\mu}+m_{\mu} c^{2}\right)^{2}-\left(m_{\mu} c^{2}\right)^{2}$ $=K_{\mu}^{2}+2 K_{\mu} m_{\mu} c^{2}$
Substituting for $p_{\mu}^{2} c^{2} \Rightarrow$
$\mathrm{m}_{\pi} c^{2}=\sqrt{m_{\mu}^{2} c^{4}+K_{\mu}^{2}+2 K_{\mu} m_{\mu} c^{2}}+\sqrt{K_{\mu}^{2}+2 K_{\mu} m_{\mu} c^{2}}$
Put in all the known \#s
$\Rightarrow m_{\pi} c^{2}=111 \mathrm{MeV}+31 \mathrm{MeV}=141 \mathrm{MeV}$
$\Rightarrow m_{\pi}=141 \mathrm{MeV} / \mathrm{c}^{2}$

Two Faced Particle : Beauty With Strangeness (Bs)

Sometimes Matter Sometimes Antimatter

Conservation of Mass-Energy: Nuclear Fission

Loss of mass shows up as kinetic energy of final state particles Disintegration energy per fission $Q=\left(M-\left(M_{1}+M_{2}+M_{3}\right)\right) c^{2}=\Delta M c^{2}$ ${ }_{92}^{236} \mathrm{U} \rightarrow{ }_{55}^{143} \mathrm{Cs}+{ }_{92}^{90} \mathrm{Rb}+3{ }_{0}^{1} \mathrm{n} \quad\left(1 \mathrm{AMU}=1.6605402 \times 10^{-27} \mathrm{~kg}=931.49 \mathrm{MeV}\right)$ $\Delta \mathrm{m}=0.177537 \mathrm{u}=2.9471 \times 10^{-28} \mathrm{~kg}=165.4 \mathrm{MeV}=$ energy release/fission =peanuts What makes it explosive is 1 mole of Uranium $=6.023 \times 10^{23}$ Nuclei !!

Nuclear Fission Schematic: Tickling a Nucleus

Sustaining Chain Reaction: $1^{\text {st }}$ three Fissions

Average \# of Neutrons/Fission = 2.5
Neutron emitted in fission of one U Needs to be captured by another

${ }^{235} U$ nucleus
To control reaction => define factor K
O O Fission fragments

- Neutron

Supercritical K >> 1 in a Nuclear Bomb Critical $K=1$ in a Nuclear Reactor

Schematic of a Pressurized-Water Reactor

Water in contact with reactor core serves as a moderator and heat transfer Medium. Heat produced in fission drives turbine

Lowering Fuel Core in a Nuclear Reactor

First Nuke Reactor :Pennsylvania 1957

Pressure Vessel contains :
14 Tons of Natural Uranium

+ 165 lb of enriched Uranium
Power plant rated at 90MW, Retired (82)

Pressure vessel packed with
Concrete now sits in Nuclear Waste Facility in Hanford, Washington

Nuclear Fusion : What Powers the Sun

Opposite of Fission

Mass of a Nucleus < mass of its component protons+Neutrons
Nuclei are stable, bound by an attractive "Strong Force"
Think of Nuclei as molecules and proton/neutron as atoms making it
Binding Energy: Work/Energy required to pull a bound system (M) apart leaving its components (m) free of the attractive force and at rest:

$$
\begin{gathered}
\mathrm{Mc}^{2}+\mathrm{BE}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~m}_{\mathrm{i}} \mathrm{c}^{2} \\
{ }_{1}^{2} \mathrm{H} \quad+\quad{ }_{1}^{2} \mathrm{H}={ }_{2}^{4} \mathrm{He}+23.9 \mathrm{MeV}= \\
\text { Deuterium } \quad \text { Deuterium }=\text { Helium }+ \text { Released Energy }
\end{gathered}
$$

Think of energy released in Fusion as Dissociation energy of Chemistry

Sun's Power Output $=4 \times 10^{26}$ Watts $\Rightarrow 10^{38}$ Fusion/Second !!!!

Nuclear Fusion: Wishing For The Star

- Fusion is eminently desirable because
- More Energy/Nucleon
- (3.52 MeV in fusion Vs 1 MeV in fission)
- ${ }^{2} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+\mathrm{n}+17.6 \mathrm{MeV}$
- Relatively abundant fuel supply, No danger like nuclear reactor going supercritical
- Unfortunately technology not commercially available
- What's inside nuclei => protons and Neutrons
- Need Large KE to overcome Coulomb repulsion between nuclei
- About 1 MeV needed to bring nuclei close enough together for Strong Nuclear Attraction \rightarrow fusion
- Need to
- heat particle to high temp such that thermal energy $\mathrm{E}=\mathrm{kT} \approx 10 \mathrm{keV} \rightarrow$ tunneling thru coulomb barrier
- Implies heating to $T \approx 10^{8} \mathrm{~K}$ (like in stars)
- Confine Plasma (\pm ions) long enough for fusion
» In stars, enormous gravitational field confines plasma

World's Most Powerful Laser : NOVA @ LLNL

Size of football field, 3 stories tall

Generates 1.0×10^{14} watts (100 terawatts)

10 laser beams converge onto H pellet (0.5 mm diam)
Fusion reaction is visible as a starlight lasting $10^{-10} \mathrm{~S}$ Releasing $10{ }^{13}$ neutrons

ITER: The Next Big Step in Nuclear Fusion

Visit www.iter.org for Details of this mega Science \& Engineering Project This may be future of cheap, clean Nuclear Energy for Earthlings

