

Physics 2D Lecture Slides Lecture 7 : Jan 12th 2005

Vivek Sharma
UCSD Physics

Lorentz Transformation Between Ref Frames

Inverse Lorentz Transformation
$x=\gamma\left(x^{\prime}+v t^{\prime}\right)$
$y=y^{\prime}$
$z=z^{\prime}$

As $v \rightarrow 0$, Galilean Transformation is recovered, as per requirement
Notice : SPACE and TIME Coordinates mixed up !!!

Lorentz Velocity Transformation Rule	
S and S^{\prime} are measuring ant's speed u along x, y, z axes	In S^{\prime} frame, $\mathrm{u}_{\mathrm{x}^{\prime}}=\frac{x_{2}^{\prime}-x_{1}^{\prime}}{t_{2}^{\prime}-t_{1}^{\prime}}=\frac{d x^{\prime}}{d t^{\prime}}$ $d x^{\prime}=\gamma(d x-v d t), d t^{\prime}=\gamma\left(d t-\frac{v}{c^{2}} d x\right)$ $\mathrm{u}_{\mathrm{x}^{\prime}}=\frac{d x-v d t}{d t-\frac{v}{c^{2}} d x}$, divide by dt' $\mathrm{u}_{\mathrm{x}^{\prime}}=\frac{u_{x}-v}{1-\frac{v u_{x}}{c^{2}}}$ For $\mathrm{v} \ll \mathrm{c}, \mathrm{u}_{\mathrm{x}^{\prime}}=u_{x}-v$ (Galilean Trans. Restored)

Velocity Transformation Perpendicular to S-S' motion
$d y^{\prime}=d y, \quad d t^{\prime}=\gamma\left(d t-\frac{v}{c^{2}} d x\right)$
$u_{y}^{\prime}=\frac{d y^{\prime}}{d y^{\prime}}=\frac{d y}{\gamma\left(d t-\frac{v}{c^{2}} d x\right)}$
divide by dt on RHS
$u_{y}^{\prime}=\frac{u_{y}}{\gamma\left(1-\frac{v}{c^{2}} u_{x}\right)}$

Similarly
 Z component of
 Ant' s velocity
 transforms as
 $u_{z}^{\prime}=\frac{u_{z}}{\gamma\left(1-\frac{v}{c^{2}} u_{x}\right)}$

There is a change in velocity in the direction \perp to S-S' motion!

Inverse Lorentz Velocity Transformation Inverse Velocity Transform:

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{x}}=\frac{u_{x^{\prime}}+v}{1+\frac{v u_{x^{\prime}}}{c^{2}}} \\
& u_{y}=\frac{u_{y}^{\prime}}{\gamma\left(1+\frac{v}{c^{2}} u_{x}^{\prime}\right)} \\
& u_{z}=\frac{u_{z}^{\prime}}{\gamma\left(1+\frac{v}{c^{2}} u_{x}^{\prime}\right)}
\end{aligned}
$$

As usual,
replace

$$
v \Rightarrow-\mathrm{v}
$$

Does Lorentz Transform "work" For Topgun ?

Two rockets A \&B travel in opposite directions

An observer on earth (S) measures speeds $=0.75 \mathrm{c}$ And 0.85c for A \& B respectively

What does A measure as B 's speed?

Place an imaginary S' frame on Rocket $A \Rightarrow v=0.75 c$ relative to Earth Observer S

$$
u_{x}^{\prime}=\frac{u_{x}-v}{1-\frac{u_{x} v}{c^{2}}}=\frac{-0.850 c-0.750 c}{1-\frac{(-0.850 c)(0.750 c)}{c^{2}}}=-0.977 c
$$

Consistent with Special Theory of Relativity

Velocity Transformation Perpendicular to S-S' motion

2 bike gang leaders racing at relativistic speeds along perpendicular paths How fast does BETA recede over right shoulder of ALPHA as seen by ALPHA

Policeperson at rest in S

I Can't be seen to arrive in SF before I take off from SD

For what value of v can $\Delta t^{\prime}<0$

$$
\begin{aligned}
& \Delta t^{\prime}<0 \Rightarrow \Delta t<\frac{v \Delta x}{c^{2}} \Rightarrow 1<\frac{v \Delta x}{c^{2} \Delta t}=\frac{v \mathrm{u}}{c^{2}} \\
& \Rightarrow \frac{\mathrm{v}}{\mathrm{c}}>\frac{c}{u} \quad \Rightarrow v>c: \text { Not allowed !! }
\end{aligned}
$$

Definition (without proof) of Relativistic Momentum

$$
\vec{p}=\frac{m \vec{u}}{\sqrt{1-(u / c)^{2}}}=\gamma m \vec{u}
$$

With the new definition relativistic momentum is conserved in all frames of references : Do the exercise

New Concepts

Rest mass = mass of object measured In a frame of ref. where object is at rest
$\gamma=\frac{1}{\sqrt{1-(u / c)^{2}}}$
u is velocity of the object
NOT of a reference frame

Relativistic Force \& Acceleration

$$
\vec{p}=\frac{m \vec{u}}{\sqrt{1-(u / c)^{2}}}=\gamma m \vec{u}
$$

$$
\begin{aligned}
& \vec{F}=\frac{d \vec{p}}{d t}=\frac{d}{d t}\left(\frac{m \vec{u}}{\sqrt{1-(u / c)^{2}}}\right) \text { use } \frac{d}{d t}=\frac{d u}{d t} \frac{d}{d u} \\
& F=\left[\frac{m}{\sqrt{1-(u / c)^{2}}}+\frac{m u}{\left(1-(u / c)^{2}\right)^{3 / 2}} \times\left(\frac{-1}{2}\right)\left(\frac{-2 u}{c^{2}}\right)\right] \frac{d u}{d t}
\end{aligned}
$$

Relativistic Force $F=\left[\frac{m c^{2}-m u^{2}+m u^{2}}{c^{2}\left(1-(u / c)^{2}\right)^{3 / 2}}\right] \frac{d u}{d t}$
And Acceleration

Reason why you cant quite get up to the speed of light no matter how hard you try!
$F=\left[\frac{m}{\left(1-(u / c)^{2}\right)^{3 / 2}}\right] \frac{d u}{d t}:$ Relativistic Force
Since Acceleration $\overrightarrow{\mathrm{a}}=\frac{d \vec{u}}{d t}$, [rate of change of velocity]
$\Rightarrow \overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{m}}\left[1-(u / c)^{2}\right]^{3 / 2}$
Note: As $u / c \rightarrow 1, \vec{a} \rightarrow 0$!!!!
Its harder to accelerate when you get
closer to speed of light

A Linear Particle Accelerator

Charged particle q moves in straight line in a uniform electric field \vec{E} with speed \vec{u} accelarates under force $\vec{F}=q \vec{E}$
$|\overrightarrow{\mathrm{a}}|=\left|\frac{d \vec{u}}{d t}\right|=\left|\frac{\vec{F}}{m}\right|\left(1-\frac{u^{2}}{c^{2}}\right)^{3 / 2}=\left|\frac{q \vec{E}}{m}\right|\left(1-\frac{u^{2}}{c^{2}}\right)^{3 / 2}$

Under force, work is done on the particle, it gains Kinetic energy

New Unit of Energy
$1 \mathrm{eV}=1.6 \times 10^{-19}$ Joules
$1 \mathrm{MeV}=1.6 \times 10^{-13}$ Joules
$1 \mathrm{GeV}=1.6 \times 10-10$ Joules
larger the potential difference V across plates, larger the force on particle

Your Television (the CRT type) is a Small Particle Accelerator!

Linear Particle Accelerator : 50 GigaVolts Accelating Potential

