

Physics 2D Lecture Slides Lecture 5: Jan 102005

Vivek Sharma
UCSD Physics

Announcements

- Pl. review material from 2A, 2B, 2C.
 Read chapters from your past course text Physics for Engineers and Scientists (3rd edition) by Wolfson and Pasachoff
- 16 : Waves
- 34 : Maxwell's Eqn and Electromagnetic Waves
- 37: Interference and Diffraction

Take advantage of Physics Tutorial Center for unlimited drop-in tutoring, see
http://physics.ucsd.edu/students/ courses/tutorialcenter/

Immediate Consequences of Einstein's Postulates: Recap

- Events that are simultaneous for one Observer are not simultaneous for another Observer in relative motion
- Time Dilation : Clocks in motion relative to an Observer appear to slow down by factor γ
- Length Contraction : Lengths of Objects in motion appear to be contracted in the direction of motion by factor γ^{-1}
- New Definitions :
- Proper Time (who measures this ?)
- Proper Length (who measures this ?)
- Different clocks for different folks !

Contrived Paradoxes of Relativity

A paradox is an apparently self-contradictory statement, the underlying meaning of which is revealed only by careful scrutiny. The purpose of a paradox is to arrest attention and provoke fresh thought
'A paradox is not a conflict within reality. It is a conflict between reality and your feeling of what reality should be like."

- Richard Feynman

Now We Construct a few paradoxes in Relativity \& analyze them

Jack and Jill's Excellent Adventure: Twin Paradox

Jack \& Jill are 20 yr old twins, with same heartbeat Jack takes off with V = 0.8c $=(4 / 5) \mathrm{c}$ to a star 20 light years away.

Jill stays behind, watches Jack by telescope. They Eventually compare notes

Twin Paradox ? - Paradox : Turn argument around, motion is relative. Look at Jack's point of view !

- Jack claims he at rest, Jill is moving $\mathrm{v}=0.8 \mathrm{c}$

- Should not Jill be 50 years old when 70 year old Jack returns from space Odyssey?
No ! ...because Jack is not always traveling in a inertial frame of reference TO GET BACK TO EARTH HE HAS TO TURN AROUND => decelerate/accelerate
But Jill always remained in Inertial frame Time dilation formula valid for Jill's observation of Jack but not to Jack's observation of Jill !!....remember this always

Non-symmetric aging verified with atomic clocks taken on airplane trip around world and compared with identical clock left behind. Observer who departs from an inertial system will always find its clock slow compared with clocks that stayed in the system

Fitting a 5 m pole in a 4 m Barnhouse ?

Student attends 2D lecture (but does no HW) ...so is banished to a farm in lowa! Meets a farmboy who is watching 2D lectures online. He does not do HW either!

There is a Barn with 2 doors 4 m apart ; There is a pole with proper length $=5 \mathrm{~m}$ Farm boy goads the student to run fast and fit the 5 m pole within 4 m barn The Triton tells the farmboy: "Dude you are nuts!" ...who is right and why ?

Sequence of Events

A: Arrival of right end of pole at left end of barn

B: Arrival of left end of pole at left end of barn

C: Arrival of right end of pole at right end of barn

Think Simultaneity !

Fitting a 5m pole in a 4m Barnhouse ?!!

Farmboy says "You can do it"
Student says "Dude, you are nuts"

Student with pole runs with $v=(3 / 5) c$
farmboy sees pole contraction factor
$\sqrt{1-(3 c / 5 c)^{2}}=4 / 5$
says pole just fits in the barn fully!
Student with pole runs with $\mathrm{v}=(3 / 5) c$ Student sees barn contraction factor $\sqrt{1-(3 c / 5 c)^{2}}=4 / 5$ says barn is only 3.2 m long, too short to contain entire 5 m pole!

Is there a contradiction? Is Relativity wrong?

Homework: You figure out who is right, if any and why.
Hint: Think in terms of observing three events

Fitting a 5 m pole in a 4 m Barnhouse?

Simultaneity Required !

Events

B: Arrival of left end of pole at left end of barn

C: Arrival of right end of pole at right end of barn

Let $\mathrm{S}=$ Barn frame, $\mathrm{S}^{\prime}=$ student frame Event A : arrival of right end of pole at left end of barn: $\left(t=0, t^{\prime}=0\right)$ is reference
$\mathrm{L}_{0}^{\prime}=$ proper length of pole in S^{\prime}
$l_{0}=$ length of barn in S frame $<\mathrm{L}_{0}^{\prime}$
In S : length of pole $\mathrm{L}=\mathrm{L}_{0}^{\prime} \sqrt{1-(v / c)^{2}}$
The times in two frames are related:
$\mathrm{t}_{\mathrm{B}}^{\prime}=\frac{l^{\prime}}{v}=\frac{l_{0}}{v} \sqrt{1-(v / c)^{2}}=t_{B C} \sqrt{1-(v / c)^{2}}$
$\mathrm{t}_{\mathrm{C}}^{\prime}=\frac{L_{0}^{\prime}}{v}=\frac{l^{\prime}}{v} \frac{1}{1-(v / c)^{2}}=\frac{t_{B C}}{\sqrt{1-(v / c)^{2}}}$
\Rightarrow Time gap in S^{\prime} by which events B and C fail to be simultaneous

Farmboy sees two events as simultaneous 2D student can not agree Fitting of the pole in barn is relative !

Doppler Effect In Sound : Reminder from 2A

Observed Frequency of sound INCREASES if emitter moves towards the Observer Observed Wavelength of sound DECREASES if emitter moves towards the Observer

$$
v=f \lambda
$$

Time Dilation Example: Relativistic Doppler Shift

- Light : velocity $\mathrm{c}=\mathrm{f} \lambda, \mathrm{f}=1 / \mathrm{T}$
- A source of light S at rest
- Observer S'approches S with velocity v
- S' measures f^{\prime} or $\lambda^{\prime}, \mathrm{c}=\mathrm{f}^{\prime} \lambda^{\prime}$
- Expect f' > f since more wave crests are being crossed by

(a)

Observer S'due to its approach direction than if it were at rest w.r.t source S

Relativistic Doppler Shift	
Examine two successive wavefronts emitted by S at location 1 and 2 In S' frame, T' = time between two wavefronts In time T', the Source moves by cT' w.r.t 1 Meanwhile Light Source moves a distance vT' Distance between successive wavefront $\lambda^{\prime}=c T^{\prime}-v T^{\prime}$	$\begin{aligned} & \lambda^{\prime}=\mathrm{cT}^{\prime}-\mathrm{vT} \mathrm{~V}^{\prime} \text {, now use } f=\mathrm{c} / \lambda \\ & \Rightarrow \mathrm{f}^{\prime}=\frac{\mathrm{c}}{(\mathrm{c}-\mathrm{v}) \mathrm{T}^{\prime}}, \mathrm{T}^{\prime}=\frac{\mathrm{T}}{\sqrt{1-(\mathrm{v} / \mathrm{c})^{2}}} \end{aligned}$ Substituting for T^{\prime}, use $\mathrm{f}=1 / \mathrm{T}$ $\begin{aligned} & \Rightarrow \mathrm{f}^{\prime}=\frac{\sqrt{1-(\mathrm{v} / \mathrm{c})^{2}}}{1-(\mathrm{v} / \mathrm{c})} \\ & \Rightarrow \mathrm{f}^{\prime}=\frac{\sqrt{1+(\mathrm{v} / \mathrm{c})}}{\sqrt{1-(\mathrm{v} / \mathrm{c})}} \mathrm{f} \end{aligned}$ better remembered as: $\begin{aligned} \mathrm{f}_{\mathrm{obs}}= & \frac{\sqrt{1+(\mathrm{v} / \mathrm{c})}}{\sqrt{1-(\mathrm{v} / \mathrm{c})}} \mathrm{f}_{\text {source }} \\ \mathrm{f}_{\text {obs }}= & \text { Freq measured by } \\ & \text { observer approching } \\ & \text { light source } \end{aligned}$

Doppler Shift \& Electromagnetic Spectrum

Fingerprint of Elements: Emission \& Absorption Spectra

Doppler Shift in Spectral Lines and Motion of Stellar Objects

Cosmological Redshift \& Discovery of the Expanding Universe:
[Space itself is Expanding]

Seeing Distant Galaxies Thru Hubble Telescope

Expanding Universe, Edwin Hubble \& Mount Palomar

Galaxies at different locations in our Universe travel at different velocities

Virgo

Ursa Major

Hydra

$15,000 \mathrm{~km} / \mathrm{s}$

$61,000 \mathrm{~km} / \mathrm{s}$

