

A PhD Thesis Fit For a Prince

- Matter Wave!
- "Pilot wave" of $\lambda=h / p=h /(\gamma m v)$
- frequency $f=E / h$
- Consequence:
- If matter has wave like properties then there would be interference (destructive \& constructive)
- Use analogy of standing waves on a plucked string to explain the quantization condition of Bohr orbits

De Broglie's Explanation of Bohr's Quantization	
	Standing waves in H atom: Constructive interference when $\mathrm{n} \lambda=2 \pi \mathrm{r}$ since $\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{h}{m v}$ (NR) $\begin{aligned} & \Rightarrow \frac{n h}{m v}=2 \pi r \\ & \Rightarrow n \hbar=m v r \end{aligned}$ Angular momentum Quantization condition!
This is too intense ! Must verify such "loony tunes" with experiment	

Just What is Waving in Matter Waves ?

For waves in an ocean, it's the water that "waves" For sound waves, it's the molecules in medium
For light it's the E \& B vectors that oscillate

What Wave Does Not Describe a Particle

- What wave form can be associated with particle's pilot wave?
- A traveling sinusoidal wave? $y=A \cos (k x-\omega t+\Phi)$
- Since de Broglie "pilot wave" represents particle, it must travel with same speed as particle(like me and my shadow)

Phase velocity $\left(\mathrm{v}_{\mathrm{p}}\right)$ of sinusoidal wave: $\mathrm{v}_{\mathrm{p}}=\lambda f$
In Matter:
(a) $\lambda=\frac{\mathrm{h}}{p}=\frac{h}{\gamma m v}$

Conflicts with
Relativity \rightarrow
Unphysical
(b) $\mathrm{f}=\frac{\mathrm{E}}{\mathrm{h}}=\frac{\gamma m c^{2}}{\mathrm{~h}}$ $\Rightarrow \mathrm{v}_{\mathrm{p}}=\lambda f=\frac{E}{p}=\frac{\gamma m c^{2}}{\gamma m v}=\frac{c^{2}}{v}>c$!

Single sinusoidal wave of infinite extent does not represent particle localized in space

> Need "wave packets" localized Spatially (x) and Temporally (t)

Wave Group or Wave Pulse

- Wave Group/packet:
- Superposition of many sinusoidal waves with different wavelengths and frequencies
- Localized in space, time
- Size designated by
- $\Delta \mathrm{x}$ or $\Delta \mathrm{t}$
- Wave groups travel with the speed $\mathrm{v}_{\mathrm{g}}=\mathrm{v}_{0}$ of particle
- Constructing Wave Packets
- Add waves of diff λ,
- For each wave, pick
- Amplitude
- Phase
- Constructive interference over the space-time of particle
- Destructive interference elsewhere!

Imagine Wave pulse moving along a string: its localized in time and space (unlike a pure harmonic wave)

(a)

Wave packet represents particle prob

How To Make Wave Packets : Just Beat it !

-Superposition of two sound waves of slightly different frequencies f_{1} and $f_{2}, f_{1} \cong f_{2}$
-Pattern of beats is a series of wave packets
-Beat frequency $f_{\text {beat }}=f_{2}-f_{1}=\Delta f$

- $\Delta \mathrm{f}=$ range of frequencies that are superimposed to form the wave packet

Displacement

Non-repeating wave packet can be created thru superposition Of many waves of similar (but different) frequencies and wavelengths

The superposition of the many waves spanning a range of frequencies is a wave packet.

Wave Packet : Localization

-Finite \# of diff. Monochromatic waves always produce INFINTE sequence of repeating wave groups \rightarrow can't describe (localized) particle
-To make localized wave packet, add " infinite" \# of waves with

Well chosen Ampl A, Wave\# k, ang.

Group, Velocity, Phase Velocity and Dispersion

In a Wave Packet: $w=w(k)$
Group Velocity $V_{g}=\left.\frac{d w}{d k}\right|_{k=k_{0}}$
Since $\mathrm{V}_{\mathrm{p}}=w k \quad(d e f) \Rightarrow w=k V_{p}$
$\therefore V_{g}=\frac{d w}{d k}\left|=V_{p}\right|_{k=k_{0}}+\left.k \frac{d V_{p}}{d k}\right|_{k=k_{0}}$
usually $\mathrm{V}_{\mathrm{p}}=V_{p}(k$ or $\lambda)$
Material in which V_{p} varies with λ are said to be Dispersive Individual harmonic waves making a wave pulse travel at
 By x30 after travelling 1 km in optical fiber different V_{p} thus changing shape of pulse and become spread out

In non-dispersive media, $\mathrm{V}_{\mathrm{g}}=V_{p}$
In dispersive media $\mathrm{V}_{\mathrm{g}} \neq V_{p}$, depends on $\frac{d V_{p}}{d k}$

Group Velocity of Wave Packets: V_{g}

Consider An Electron:

mass $=\mathrm{m}$ velocity $=\mathrm{v}$, momentum $=\mathrm{p}$
Energy $\mathrm{E}=\mathrm{hf}=\gamma \mathrm{mc}^{2} ; \quad \omega=2 \pi f=\frac{2 \pi}{\mathrm{~h}} \gamma \mathrm{mc}^{2}$
Wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{p}} ; \mathrm{k}=\frac{2 \pi}{\lambda} \Rightarrow k=\frac{2 \pi}{h} \gamma m v$
Group Velocity: $\mathrm{V}_{\mathrm{g}}=\frac{d w}{d k}=\frac{d w / d v}{d k / d v}$

$\frac{d w}{d v}=\frac{d}{d v}\left[\frac{\frac{2 \pi}{\mathrm{~h}} \mathrm{mc}^{2}}{\left[1-\left(\frac{\mathrm{v}}{\mathrm{c}}\right)^{2}\right]^{1 / 2}}\right]=\frac{2 \pi \mathrm{mv}}{\mathrm{h}\left[1-\left(\frac{\mathrm{v}}{\mathrm{c}}\right)^{2}\right]^{3 / 2}} \& \frac{d k}{d v}=\frac{d}{d v}\left[\frac{2 \pi}{h\left[1-\left(\frac{\mathrm{v}}{\mathrm{c}}\right)^{2}\right]^{1 / 2}} m v\right]=\frac{2 \pi \mathrm{~m}}{\mathrm{~h}\left[1-\left(\frac{\mathrm{v}}{\mathrm{c}}\right)^{2}\right]^{3 / 2}}$
$\mathrm{V}_{\mathrm{g}}=\frac{d w}{d k}=\frac{d w / d v}{d k / d v}=v \Rightarrow$ Group velocity of electron Wave packet "pilot wave"
is same as electron's physical velocity
But velocity of individual waves making up the wave packet $\mathrm{V}_{\mathrm{p}}=\frac{w}{k}=\frac{c^{2}}{v}>c!\quad$ (not physical)

Signal Transmission and Bandwidth Theory

- Short duration pulses are used to transmit digital info
- Over phone line as brief tone pulses
- Over satellite link as brief radio pulses
- Over optical fiber as brief laser light pulses
- Ragardless of type of wave or medium, any wave pulse must obey the fundamental relation

$$
\text { 》 } \Delta \omega \Delta t \cong \pi
$$

- Range of frequencies that can be transmitted are called bandwidth of the medium
- Shortest possible pulse that can be transmitted thru a medium is $\Delta \mathrm{t}_{\text {min }} \cong \pi / \Delta \omega$
- Higher bandwidths transmits shorter pulses \& allows high data rate

Wave Packets \& Uncertainty Principles of Subatomic Physics

in space $\mathrm{x}: \Delta k \cdot \Delta x=\pi \Rightarrow$ since $\mathrm{k}=\frac{2 \pi}{\lambda}, \mathrm{p}=\frac{\mathrm{h}}{\lambda}$

$$
\Rightarrow \quad \Delta p \cdot \Delta x=h / 2
$$

usually one writes $\Delta p . \Delta x \geq \hbar / 2$ approximate relation

In time $\mathrm{t}: \Delta w \cdot \Delta t=\pi \Rightarrow$ since $\omega=2 \pi f, E=h f$

$$
\Rightarrow \Delta E . \Delta t=h / 2
$$

usually one writes $\Delta E . \Delta t \geq \hbar / 2$ approximate relation

What do these inequalities mean physically?

Know the Error of Thy Ways: Measurement Error $\rightarrow \Delta$

- Measurements are made by observing something : length, time, momentum, energy
- All measurements have some (limited) precision`...no matter the instrument used
- Examples:
- How long is a desk ? $\mathrm{L}=(5 \pm 0.1) \mathrm{m}=\mathrm{L} \pm \Delta \mathrm{L}$ (depends on ruler used)
- How long was this lecture ? $\mathrm{T}=(50 \pm 1)$ minutes $=\mathrm{T} \pm \Delta \mathrm{T}$ (depends on the accuracy of your watch)
- How much does Prof. Sharma weigh ? $M=(1000 \pm 700) \mathrm{kg}=\mathrm{m} \pm \Delta \mathrm{m}$
- Is this a correct measure of my weight ?
- Correct (because of large error reported) but imprecise
- My correct weight is covered by the (large) error in observation

Best Estimate Length: 36 mm Probable Range: 35.5 to 36.5 mm

Length Measure

Best Estimate of Voltage: 5.3 V
Estimated Range: 5.2 to 5.4 mm
Voltage (or time) Measure

Measurement Error : $\mathrm{x} \pm \Delta \mathrm{x}$

- Measurement errors are unavoidable since the measurement procedure is an experimental on
- True value of an measurable quantity is an abstract concept
- In a set of repeated measurements with random errors, the distribution of measurements resembles a Gaussian distribution characterized by the parameter σ or Δ characterizing the width of the distribution

of x

Interpreting Measurements with random Error : Δ

Figure 5.12. The shaded area between $X \pm t \sigma$ is the probability of a measurement within t standard deviations of \boldsymbol{X}.

t	0	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.5	3.0	3.5	4.0
Prob (\%)	0	20	38	55	68	79	87	92	95.4	98.8	99.7	99.95	99.99

Where in the World is Carmen San Diego?

- Carmen San Diego hidden inside a big box of length L
- Suppose you can't see thru the (blue) box, what is you best estimate of her location inside box (she could be anywhere inside the box)

Your best unbiased measure would be $\mathrm{x}=\mathrm{L} / 2 \pm \mathrm{L} / 2$

There is no perfect measurement, there are always measurement error

Wave Packets \& Matter Waves

What is the Wave Length of this wave packet?

$$
\lambda-\Delta \lambda<\lambda<\lambda+\Delta \lambda
$$

De Broglie wavelength $\lambda=\mathrm{h} / \mathrm{p}$
\rightarrow Momentum Uncertainty: $\mathrm{p}-\Delta \mathrm{p}<\mathrm{p}<\mathrm{p}+\Delta \mathrm{p}$
Similarly for frequency ω or f
$\omega-\Delta \omega<\omega<\omega+\Delta \omega$
Planck's condition $\mathrm{E}=\mathrm{hf}=\mathrm{h} \omega / 2$
$\rightarrow \quad \mathrm{E}-\Delta \mathrm{E}<\mathrm{E}<\mathrm{E}+\Delta \mathrm{E}$

Back to Heisenberg's Uncertainty Principle \& Δ

- $\Delta \mathrm{x} . \Delta \mathrm{p} \geq \mathrm{h} / 4 \pi \Rightarrow$
- If the measurement of the position of a particle is made with a precision Δx and a SIMULTANEOUS measurement of its momentum p_{x} in the X direction, then the product of the two uncertainties (measurement errors) can never be smaller than $\cong h / 4 \pi$ irrespective of how precise the measurement tools
- $\Delta \mathrm{E} . \Delta \mathrm{t} \geq \mathrm{h} / 4 \pi \Rightarrow$
- If the measurement of the energy E of a particle is made with a precision $\Delta \mathrm{E}$ and it took time $\Delta \mathrm{t}$ to make that measurement, then the product of the two uncertainties (measurement errors) can never be smaller than $\cong h / 4 \pi$ irrespective of how precise the measurement tools

These rules arise from the way we constructed the Wave packets describing Matter "pilot" waves

Perhaps these rules
Are bogus, can we verify this with some physical picture ??

The Act of Observation (Compton Scattering)

Observations of particle motion by means of scattered illumination. When the incident wavelength is reduced to accommodate the size of the particle, the momentum transferred by the photon becomes large enough to disturb the observed motion.

Diffraction By a Circular Aperture (Lens)

See Resnick, Halliday Walker $6^{\text {th }}$ Ed (on S.Reserve), Ch 37, pages 898-900

Diffracted image of a point source of light thru a lens (circular aperture of size d)

First minimum of diffraction pattern is located by

See previous picture for definitions of $\vartheta, \lambda, \mathrm{d}$

Resolving Power of Light Thru a Lens

Image of 2 separate point sources formed by a converging lens of diameter d , ability to resolve them depends on $\lambda \& d$ because of the Inherent diffraction in image formation

Pseudo-Philosophical Aftermath of Uncertainty Principle

- Newtonian Physics \& Deterministic physics topples over
- Newton's laws told you all you needed to know about trajectory of a particle
- Apply a force, watch the particle go !
- Know every thing ! X, v, p, F, a
- Can predict exact trajectory of particle if you had perfect device
- No so in the subatomic world !
- Of small momenta, forces, energies
- Cant predict anything exactly
- Can only predict probabilities
- There is so much chance that the particle landed here or there
Cant be sure !...cognizant of the errors of thy observations Philosophers went nutsWhat has happened to nature Philosophers just talk, don't do real life experiments!

All Measurements Have Associated Errors

- If your measuring apparatus has an intrinsic inaccuracy (error) of amount Δp
- Then results of measurement of momentum p of an object at rest can easily yield a range of values accommodated by the measurement imprecision :
$-\quad-\Delta p \leq p \leq \Delta p$
- Similarly for all measurable quantities like x, t, Energy !

