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Simple Harmonic Oscillator:
Quantum and Classical Pictures Compared

[Motion of a Classical Oscillator (ideal)|

Spring with
Force Const

Ball originally displaced from its equilibirium
position, motion confined between x=0 & x=A

U(x):ikx2 :lma)zxz;w = \/K: Ang. Freq
2 2 m

E= %kA2 = Changing amplitude A changes E

E can take any value & ifA—0,E— 0
ﬂ Max. KE atx =0, KE= 0 at x== A
X




Quantum Picture: Harmonic Oscillator
Find the Ground state Wave Function w(x)

Find the Ground state Energy E when U(x)=%ma)2x2

22 A2
iaw—()()+lmwzle//(x) =E l//(X)

Time Dependent Schrodinger Eqn:
P ger=q 2m  0°x 2

2
d (;/;EX) = Zh_rzn(E —%mmzxz)y/(x) =0| What y/(x) solves this?

Two guesses about the simplest Wavefunction:
1. w(x) should be symmetric about x 2. w(x) —>0asx —»

+ w(x) should be continuous & % = continuous

My guess: w(x) = Coe"’XZ ;Need to find C; & o :

What does this wavefunction & PDF look like?

Quantum Picture: Harmonic Oscillator

P(x) = C?,e 2"

w(x) = Ce ™ ¢

Co

X

How to Get C, & o ?? ...Try plugging in the wave-function into
the time-independent Schr. Eqgn.




Time Independent Sch. Eqn & The Harmonic Oscillator

Sy (x)  2m 1
2

Master Equation is : = ?[E ma*x* —Ely(X)

Since y(Xx) = Coe"”Xz , % =C, (—Zax)e’“xz ,
X

dy(x) _ C d(-2ax) -
dx? ° dx

= C,ll4a’x] - [2alle ™ = i—T[ %ma)zx2 —E]C,e™

Match the coeff of x*> and the Constant terms on LHS & RHS

+C,(—2ax)2e™™ = C,[4a?x? —2a]e ™

= 4a’ =2—r2nlma)2 or g=1%
ne 2 fi

& the other match gives 2a:§1—T E, substituing a =

E:%ha):hf mi....(Planck's Oscillators)

What about C,? We learn about that from the Normalization cond.

SHO: Normalization Condition

—mawx?

j|%(x)|2 dx:l:jcge "dx
Since J e dx = \/z (dont memorize this)
a

Identifying a=% and using the identity above

1

= CO = |:@:| !
7h

Hence the Complete NORMALIZED groundstate wave function is :

< —mox’

mae |4 .
w,(X) = [—h} e 2" | Ground State Wavefunction
T

has energy E = hf X=0——

A

Planck's Oscillators were electrons tied by the "spring™ of the
mutually attractive Coulomb Force




Quantum Oscillator In Pictures

Quantum Mechanical Prob for particle

E=KE+U (X) > 0 for n=0 To live outside cla.ss.lcal turning points
Is finite !
U‘gx) ()
&
S
£ C
g - 0 Exponential
U == xx®
;:’?. E, 2 1 1
__________ | N J—— | |
| | '
: : x | l
X
-A +A
Position -A A

Classically particle most likely to be at the turning point (velocity=0)
Quantum Mechanically , particle most likely to be at x=x, for n=0

Classical & Quantum Pictures of Harmonic Oscillator compared
» Limits of classical vibration = Turning Points

Classical oscillator : atx =+ A, changes all KE into potential energy of spring

Total energy E (x = +A) = KE (x = +A) + U (x = +A) = 0 +%msz2
For Quantum Oscillator : Total Energy E = %Tza);

. . . 1 1,
comparing classical and quantum energies = Eha) = Eman2

.

A= ;
ma

Classical oscillator bound within -A<x < A= {
mao

Cannot venture outside x = A because it has no KE left

But due to Uncertainty principle, the Quantum Probability for
particle outside classical turning points P(|x|>A) >0 !!




Quantum Oscillator In The Classically Forbidden Territory

Calculate probability of Quantum oscillator where a Classical oscillator can't dare be !
2 © 2

-A
= Calculate P(X[|>A = L) : P(|X|>A):J.\y/o(x)\ dx + ﬂy/o(x)\ dx
1) A

1 mm 2
since y,(x) = {mﬂ o) is symmetric about x=0
wn

mao ) 2
= P(X[>A)= 2]\.// (x)\ dx =2 | @ Zfe A5 dx
7rf1

Change variable: z = / ?x and write A =
Mo

5 =
= P(X|>A)=—=|¢€
7!
P(X|>A) =16% !
Large probability to go on to the "other side" !

2 4z = Error Fn=erfc(1)=0.157

Excited States of The Quantum Oscillator

mwx?

v,(x)=CH,(x)e 2" ; ¥ L

H, (x) = Hermite Polynomials

i / \ L\(
Ho(x)=1 0 X I ] x
H, (x)=2x n=0 n=1

H, (X)=4x> -2
H,(x)=8x® -12x

. d e‘X

H, ()=(-1)"e"

and 0 X

1 1
E =(n+)Aw=(n+=)hf
= 2)60 ( 2)

Again n=0,1,2,3...00 Quantum #




Excited States of The Quantum Oscillator

2 R
i 1 e +* ! = ]

5-4-3-2-1 0 1 2 3 4 5

U x)

T‘n\ _,l; ?&:1

v | | . Vs

\ B =3 ho 5-4-5-2-1 0 1 2 8 4 5

\ n=2

\ 1 23 45
AE=ho \ " a iala Al »8
- o ,

| E@=§fm _ 12345

-5-4-35-2-1 6 1 2 3 4 5

Ground State Energy >0 always As n > o classical and quantum
probabilities become similar

Measurement Expectation: Statistics Lesson

» Ensemble & probable outcome of a single measurement or the
average outcome of a large # of measurements

Zn“nixi T xP(x)dx

X AN, + N X X

<X >

N +n, +N, +...N, N TP(x)dx
For a general Fn f(x) Sharpness of a distribution:
Zn:ni f(x) I v (x) f ()W (x)dx = scatter around the average

< f(x)>=-=2 = X, —X)?
N j P(x)dx Gﬂ/—z N

o= (X) = (%)’
o=small — Sharp distr.
Uncertainty AX = o




Particle in the Box, n=1, find <x> & AX ?
w(X)= 3sin(zx) Vs
L (L N

T2 . (r 2 . (&
<X>:.[\/Esm(txj X \/Esm(rdex

L
:gj'xsin2 [Z x]dx , change variable 6= (5 x)
LY L L) 2/LL
2 % 1
= 90= Jesm @ , usesin 6=E(1_0052€)
0 0 L X

= <x>:22—7|[‘zﬁt9d¢9 - E& cosZHdH} use J'udv:uv-f vdu

2
= <x>:|‘2[”2j:|2' (same result as from graphing y*(x))
T
L 2 2
- . L© L
Similarly <x?>={ x2sin?(Z x)dx = — - ——
Y l (L ) 3 27’

AX=20% of L. Particle not sharplv confined in Box

Expectation Values & Operators: More Formally

» Observable: Any particle property that can be measured
— X,P, KE, E or some combination of them,e,g: x2
— How to calculate the probable value of these quantities for a QM state ?

» Operator: Associates an operator with each observable
— Using these Operators, one calculates the average value of that Observable

— The Operator acts on the Wavefunction (Operand) & extracts info about the
Observable in a straightforward way-> gets Expectation value for that
observable




Table 5.2 Common Observables and

Associated Operators
Associated
Observable Symbel Operator
position x x
X
momentum p g
potential energy U Ul x)
L k2 92
kinetic energy K T om a2
Az 92
iltoni ———
hamiltonian H o 2 Ulx)
d
total energy E efi Py

Operators - Information Extractors

[plorp= n di Momentum Operator
i dx

gives the value of average mometum in the following way:

P> = [w 0lel (00 = [y (2] ax

Similerly

i) dx
Similerly :
£ - n* d?
o [K]or K = -—— gives the value of average KE
"; 2m dx
('_U +o0 . +o0 . hz d2 X
S <Ko= [y K (0dk= [y (x){——#]dx
g d 2m  dx
)
o
=
(a

<U>= j v (X)[U (X)]w (x)dx : plug in the U(x) fn for that case

and <E> :TW*(X)[K +U (X)Jw (x)dx = T://*(x)[—i A% (x) +U (x)jdx

2m  dx’
Hamiltonian Operator [[H] = [K] +[U]

The Energy Operator| [E] = ih% informs you of the average energy




[H] & [E] Operators

[H] is a function of x
[E] is a function of t they are really different operators

But they produce identical results when applied to any solution of the
time-dependent Schrodinger Eq.

[HI¥(x.1) = [E] ¥(x.1)

W 0°

G,
{_ERJFU (x,t)} P(x,t) = [Ih E}P(X’t)

Think of S. Eq as an expression for Energy conservation for a
Quantum system

Where do Operators come from ? A touchy-feely answer

Example:[p] The momentum Extractor (operator):
Consider as an example: Free Particle Wavefunction
_ 2z h p

P (x,t) = Ae' -k A=—=k==
P h
i(x- i(Ex-
rewrite W(x,t) = Ae v Wt); 8‘Pa(x,t) = i%Ae W i%‘l’(x,t)
X

= {zi}‘lf(x,t) =p ¥ (x,t)
I OX

So it is not unreasonable to associate [p]:[zag} with observable p
i OX




Example: Average Momentum of Particle in Rigid Box

» Given the symmetry of the 1D box, we argued last time that <p>=0
: now some inglorious math to prove it !
— Be lazy, when you can get away with a symmetry argument to solve a
problemfp it & avoid the evil integrat':/m & algebra.....but be sure!

)= Zsinn) &y, (0= Zsin(t Ty

- <
<p>= ,[V/ [p]y/dX:Jy/ {%&:‘y/dx

<p> Egn—ﬂfsm(—x)cos(—x)dx

. . 1 . nz
Since fsmax cosax dx = 2—5|n2 ax ..herea= T
a

x=L
=< p>= T_[sm (T x} =0 since Sin?(0) =Sin*(nz) =0
| x=0

We knew THAT before doing any math !

Quiz 1: What is the <p> for the Quantum Oscillator in its symmetric ground state
Quiz 2: What is the <p> for the Quantum Oscillator in its asymmetric first excited state

But what about the <KE> of the Particle in Box ?

2
< p >= 0 so what about expectation value of K=;—?
m

< K >=0 because < p>=0; clearly not, since we showed E=KE = 0
Why ? What gives ?

Because p, =+,/2mE, = +n%h "£" is the key!

The AVERAGE p =0, since particle is moving back & forth

2 <p2 >

<KE> = <p—> #0; not
2m 2m

Be careful when being "lazy"

Quiz: what about <KE> of a quantum Oscillator?
Does similar logic apply??




Schrodinger Eqgn: Stationary State Form

Recall-=> when potential does not depend on time explicitly U(x,t)
=U(x) only...we used separation of x,t variables to simplify W¥(x,t) =
y(X) o(t) & broke S. Eq. into two: one with x only and another with
tonly

Y LU (p (0= E (9

a(15(t) _ Eg(t)

How to put Humpty-Dumpty back together ? e.g to say how to
go from an expression of y(x)—'¥(x,t) which describes
time-evolution of the overall wave function

F(x.1) =w(X)a(t)

Stationary State: Putting Humpty Dumpty Back Togather

nce S 1in 1oL A
Since d—[ln f(t)]= o

i in 08 ¢(t) 1 o) _E__iE
pt) ot ik h
and mtegrate both sides w.r.t. time

t=t A t H t H
jiﬂt)dt :I_Edtjjiwdt __IE
Lo(t) ot he g e(t) dt h

= Eg(t) , rewrite as —

Ing(t)—Inp(0) = —%t , Now exponentiate both sides
{

=¢(t) = gb(O)e_i%I ; ¢(0) = constant= initial condition = 1 (e.g)

S 4t)=e " &Thus ¥(x)=w(x)e " where E = energy of system

11



Schrodinger Eqn: Stationary State Form

iE iE iE, IE
PO, ) =¥'¥=p (e y(x)e " =y (y(e’ " =ly()F
In such cases, P(x,t) is INDEPENDENT of time.
These are called "stationary" states because Prob is independent of time
Examples : Particle in a box (why?)
- Quantum Oscillator (why?)
Total energy of the system depends on the spatial orientation
of the system : charteristic of the potential U(x,t) !
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