Physics 2D Lecture Slides Lecture 24: Feb 28th 2005

Vivek Sharma
UCSD Physics

Simple Harmonic Oscillator: Quantum and Classical Pictures Compared

Motion of a Classical Oscillator (ideal)
Ball originally displaced from its equilibirium position, motion confined between $x=0 \& x=A$
$\mathrm{U}(\mathrm{x})=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega^{2} x^{2} ; \omega=\sqrt{\frac{k}{m}}=$ Ang. Freq
$E=\frac{1}{2} k A^{2} \Rightarrow$ Changing amplitude A changes E
E can take any value $\&$ if $\mathrm{A} \rightarrow 0, \mathrm{E} \rightarrow 0$
Max. KE at $\mathrm{x}=0, \mathrm{KE}=0$ at $\mathrm{x}= \pm \mathrm{A}$

Quantum Picture: Harmonic Oscillator

Find the Ground state Wave Function $\psi(x)$
Find the Ground state Energy E when $\mathrm{U}(\mathrm{x})=\frac{1}{2} m \omega^{2} x^{2}$
Time Dependent Schrodinger Eqn: $\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x)$
$\Rightarrow \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}\left(E-\frac{1}{2} m \omega^{2} x^{2}\right) \psi(x)=0$ What $\psi(\mathrm{x})$ solves this?

Two guesses about the simplest Wavefunction:
$\begin{array}{ll}\text { 1. } \psi(\mathrm{x}) \text { should be symmetric about } \mathrm{x} & \text { 2. } \psi(\mathrm{x}) \rightarrow 0 \text { as } \mathrm{x} \rightarrow \infty\end{array}$
$+\psi(\mathrm{x})$ should be continuous $\& \frac{d \psi(\mathrm{x})}{d x}=$ continuous

My guess: $\psi(\mathrm{x})=\mathrm{C}_{0} \mathrm{e}^{-\alpha x^{2}}$; Need to find $\mathrm{C}_{0} \& \alpha$:

What does this wavefunction \& PDF look like?

Quantum Picture: Harmonic Oscillator

$$
\mathrm{P}(\mathrm{x})=\mathrm{C}_{0}^{2} e^{-2 \alpha x^{2}}
$$

How to Get $C_{0} \& \alpha$?? ...Try plugging in the wave-function into the time-independent Schr. Eqn.

Time Independent Sch. Eqn \& The Harmonic Oscillator

Master Equation is : $\frac{\partial^{2} \psi(x)}{\partial x^{2}}=\frac{2 m}{\hbar^{2}}\left[\frac{1}{2} m \omega^{2} x^{2}-E\right] \psi(x)$
Since $\psi(x)=C_{0} e^{-\alpha x^{2}}, \frac{d \psi(x)}{d x}=C_{0}(-2 \alpha x) e^{-\alpha x^{2}}$,

$$
\begin{aligned}
& \frac{d^{2} \psi(x)}{d x^{2}}=C_{0} \frac{d(-2 \alpha x)}{d x} e^{-\alpha x^{2}}+C_{0}(-2 \alpha x)^{2} e^{-\alpha x^{2}}=C_{0}\left[4 \alpha^{2} x^{2}-2 \alpha\right] e^{-\alpha x^{2}} \\
& \left.\Rightarrow C_{0}\left[4 \alpha^{2} x^{2}\right]-2 \alpha\right] e^{-\alpha x^{2}}=\frac{2 m}{\hbar^{2}}\left[\frac{1}{2} m \omega^{2} x^{2}-E\right] C_{0} e^{-\alpha x^{2}}
\end{aligned}
$$

Match the coeff of x^{2} and the Constant terms on LHS \& RHS
$\Rightarrow 4 \alpha^{2}=\frac{2 m}{\hbar^{2}} \frac{1}{2} m \omega^{2}$ or $\alpha=\frac{\mathrm{m} \omega}{2 \hbar}$
\& the other match gives $2 \alpha=\frac{2 m}{\hbar^{2}} E$, substituing $\alpha \Rightarrow$

$$
\mathrm{E}=\frac{1}{2} \hbar \omega=\mathrm{hf} \quad \text { !!!!......(Planck's Oscillators) }
$$

What about C_{0} ? We learn about that from the Normalization cond.

SHO: Normalization Condition

$$
\begin{aligned}
& \int_{-\infty}^{+\infty}\left|\psi_{0}(x)\right|^{2} d x=1=\int_{-\infty}^{+\infty} C_{0}^{2} e^{\frac{-m \omega x^{2}}{\hbar}} d x \\
& \text { Since } \int_{-\infty}^{+\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} \quad \text { (dont memorize this) }
\end{aligned}
$$

Identifying $\mathrm{a}=\frac{m \omega}{\hbar}$ and using the identity above

$$
\Rightarrow \quad C_{0}=\left[\frac{m \omega}{\pi \hbar}\right]^{\frac{1}{4}}
$$

Hence the Complete NORMALIZED groundstate wave function is :

$$
\psi_{0}(\mathrm{x})=\left[\frac{m \omega}{\pi \hbar}\right]^{\frac{1}{4}} e^{\frac{-m \omega x^{2}}{2 \hbar}}
$$

has energy $\mathrm{E}=\mathrm{hf}$ Ground State Wavefunction

Planck's Oscillators were electrons tied by the "spring" of the

$$
\mathrm{X}=0
$$ mutually attractive Coulomb Force

Classical \& Quantum Pictures of Harmonic Oscillator compared

- Limits of classical vibration \Rightarrow Turning Points

Classical oscillator : at $\mathrm{x}= \pm \mathrm{A}$, changes all KE into potential energy of spring
Total energy $E(x= \pm A)=K E(x= \pm A)+U(x= \pm A)=0+\frac{1}{2} m \omega^{2} A^{2}$
For Quantum Oscillator : Total Energy E = $\frac{1}{2} \hbar \omega$;
comparing classical and quantum energies $\Rightarrow \frac{1}{2} \hbar \omega=\frac{1}{2} m \omega^{2} A^{2}$
$\Rightarrow A=\sqrt{\frac{\hbar}{m \omega}} ;$
Classical oscillator bound within $-\mathrm{A} \leq \mathrm{x} \leq \mathrm{A}=\sqrt{\frac{\hbar}{\mathrm{m} \omega}}$
Cannot venture outside $x= \pm \mathrm{A}$ because it has no KE left

- But due to Uncertainty principle, the Quantum Probability for particle outside classical turning points $\mathrm{P}(|\mathrm{x}|>\mathrm{A})>0$!!

Quantum Oscillator In The Classically Forbidden Territory

Calculate probability of Quantum oscillator where a Classical oscillator can't dare be !
\Rightarrow Calculate $\mathrm{P}\left(|\mathrm{X}|>\mathrm{A}=\sqrt{\frac{\hbar}{\mathrm{m} \omega}}\right) ; \quad \mathrm{P}(|\mathrm{X}|>\mathrm{A})=\int_{-\infty}^{-\mathrm{A}}\left|\psi_{0}(x)\right|^{2} d x+\int_{\mathrm{A}}^{\infty}\left|\psi_{0}(x)\right|^{2} d x$
Since $\psi_{0}(x)=\left[\frac{m \omega}{\pi \hbar}\right]^{\frac{1}{4}} e^{-\left(\frac{m \omega}{2 \hbar}\right) x^{2}}$ is symmetric about $x=0$
$\Rightarrow \mathrm{P}(|\mathrm{X}|>\mathrm{A})=2 \int_{\mathrm{A}}^{\infty}\left|\psi_{0}(x)\right|^{2} d x=2\left[\frac{m \omega}{\pi \hbar}\right]^{\frac{1}{2}} \int_{\mathrm{A}}^{\infty} e^{-2\left(\frac{m \omega}{2 \hbar}\right) x^{2}} d x$
Change variable: $\mathrm{z}=\sqrt{\frac{\mathrm{m} \omega}{\hbar}} x$ and write $\mathrm{A}=\sqrt{\frac{\hbar}{\mathrm{m} \omega}}$
$\Rightarrow \mathrm{P}(|\mathrm{X}|>\mathrm{A})=\frac{2}{\sqrt{\pi}} \int_{1}^{\infty} e^{-z^{2}} d z=$ Error $\operatorname{Fn}=\operatorname{erfc}(1)=0.157$
$\mathrm{P}(|\mathrm{X}|>\mathrm{A})=16 \%$!!!
Large probability to go on to the "other side" !

Excited States of The Quantum Oscillator

$\psi_{n}(x)=C_{n} H_{n}(x) e^{-\frac{m \omega x^{2}}{2 \hbar}} ;$
$H_{n}(x)=$ Hermite Polynomials
with
$H_{0}(x)=1$
$H_{1}(x)=2 x$
$H_{2}(x)=4 x^{2}-2$
$H_{3}(x)=8 x^{3}-12 x$
$H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n} e^{-x^{2}}}{d x^{n}}$
and
$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega=\left(n+\frac{1}{2}\right) h f$

Again n=0,1,2,3... ∞ Quantum \#

Measurement Expectation: Statistics Lesson

- Ensemble \& probable outcome of a single measurement or the average outcome of a large \# of measurements
$\langle x\rangle=\frac{n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{3}+\ldots . n_{i} x_{i}}{n_{1}+n_{2}+n_{3}+\ldots n_{i}}=\frac{\sum_{i=1}^{n} n_{i} x_{i}}{N}=\frac{\int_{-\infty}^{\infty} x P(x) d x}{\int_{-\infty}^{\infty} P(x) d x}$

For a general $\operatorname{Fn} \mathrm{f}(\mathrm{x})$
$\langle f(x)\rangle=\frac{\sum_{i=1}^{n} n_{i} f\left(x_{i}\right)}{N}=\frac{\int_{-\infty}^{\infty} \psi^{*}(x) f(x) \psi(x) d x}{\int_{-\infty}^{\infty} P(x) d x}$

Sharpness of a distribution:
= scatter around the average
$\sigma=\sqrt{\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}}{N}}$
$\sigma=\sqrt{\left(\overline{x^{2}}\right)-(\bar{x})^{2}}$
$\sigma=$ small \rightarrow Sharp distr.
Uncertainty $\Delta \mathrm{X}=\sigma$

> Particle in the Box, $n=1$, find $\langle x\rangle \& \Delta x$?
> $\psi(\mathrm{x})=\sqrt{\frac{2}{\mathrm{~L}}} \sin \left(\frac{\pi}{L} x\right)$
> $\langle\mathrm{x}\rangle=\int_{-\infty}^{\infty} \sqrt{\frac{2}{\mathrm{~L}}} \sin \left(\frac{\pi}{L} x\right) \times \sqrt{\frac{2}{\mathrm{~L}}} \sin \left(\frac{\pi}{L} x\right) d x$
> $=\frac{2}{L} \int_{0}^{L} x \sin ^{2}\left(\frac{\pi}{L} x\right) d x$, change variable $\theta=\left(\frac{\pi}{L} x\right)$
> $\Rightarrow\langle\mathrm{x}\rangle=\frac{2}{\mathrm{~L} \pi^{2}} \int_{0}^{\pi} \theta \sin ^{2} \theta$, use $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$
> $\Rightarrow\langle\mathrm{x}\rangle=\frac{2 \mathrm{~L}}{2 \pi^{2}}\left[\int_{0}^{\pi} \theta \mathrm{d} \theta-\int_{0}^{\pi} \theta \cos 2 \theta d \theta\right]$ use $\int u d v=u v-\int \mathrm{vdu}$
> $\Rightarrow\langle\mathrm{x}\rangle=\frac{\mathrm{L}}{\pi^{2}}\left(\frac{\pi^{2}}{2}\right)=\frac{L}{2} \quad$ (same result as from graphing $\left.\psi^{2}(x)\right)$
> Similarly $\left\langle\mathrm{x}^{2}\right\rangle=\int_{0}^{\mathrm{L}} \mathrm{x}^{2} \sin ^{2}\left(\frac{\pi}{L} x\right) d x=\frac{L^{2}}{3}-\frac{L^{2}}{2 \pi^{2}}$
> and $\Delta \mathrm{X}=\sqrt{\left\langle\mathrm{X}^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\frac{L^{2}}{3}-\frac{L^{2}}{2 \pi^{2}}-\frac{L^{2}}{4}}=0.18 L$
> $\Delta X=20 \%$ of L, Particle not sharply confined in Box

Expectation Values \& Operators: More Formally

- Observable: Any particle property that can be measured
- X,P, KE, E or some combination of them, e,g: x^{2}
- How to calculate the probable value of these quantities for a QM state ?
- Operator: Associates an operator with each observable
- Using these Operators, one calculates the average value of that Observable
- The Operator acts on the Wavefunction (Operand) \& extracts info about the Observable in a straightforward way \rightarrow gets Expectation value for that observable

$$
<Q>=\int^{+\infty} \Psi^{*}(x, t)[\hat{Q}] \Psi^{*}(x, t) d x
$$

Q is the observable, [$\hat{Q}]$ is the operator
$\&<Q>$ is the Expectation value
Examples: $[\mathrm{X}]=\mathrm{x}$,
$[\mathrm{P}]=\frac{\hbar}{\mathrm{i}} \frac{d}{d x}$
$[\mathrm{K}]=\frac{[\mathrm{P}]^{2}}{2 \mathrm{~m}}=\frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2}}{\partial x^{2}}$
$[E]=i \hbar \frac{\partial}{\partial t}$

Table 5.2 Common Observables and Associated Operators

Observable	Symbol	Associated Operator
position	x	x
momentum	p	$\frac{\hbar}{i} \frac{\partial}{\partial x}$
potential energy	U	$U(x)$
kinetic energy	K	$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$
hamiltonian	H	$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)$
total energy	E	$i \hbar \frac{\partial}{\partial t}$

Operators \rightarrow Information Extractors

[p] or $\hat{p}=\frac{\hbar}{i} \frac{d}{d x} \quad$ Momentum Operator
gives the value of average mometum in the following way:
$<\mathrm{p}>=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[p] \psi(x) d x=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})\left(\frac{\hbar}{\mathrm{i}}\right) \frac{d \psi}{d x} d x$
Similerly :
$[\mathrm{K}]$ or $\hat{\mathrm{K}}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2}}{d x^{2}}$ gives the value of average KE
$<\mathrm{K}>=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[K] \psi(x) d x=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})\left(-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}\right) d x$
Similerly
$<\mathrm{U}>=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[U(x)] \psi(x) d x \quad$: plug in the $\mathrm{U}(\mathrm{x})$ fn for that case
and $\langle\mathrm{E}\rangle=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[K+U(x)] \psi(x) d x=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})\left(-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}+U(x)\right) d x$
Hamiltonian Operator $[\mathrm{H}]=[\mathrm{K}]+[\mathrm{U}]$
The Energy Operator $[\mathrm{E}]=\mathrm{i} \hbar \frac{\partial}{\partial t}$ informs you of the average energy

[H] \& [E] Operators

- $[\mathrm{H}]$ is a function of x
- [E] is a function of t.......they are really different operators
- But they produce identical results when applied to any solution of the time-dependent Schrodinger Eq.
- $[H] \Psi(\mathrm{x}, \mathrm{t})=[\mathrm{E}] \Psi(\mathrm{x}, \mathrm{t})$

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x, t)\right] \Psi(x, t)=\left[i \hbar \frac{\partial}{\partial t}\right] \Psi(x, t)
$$

- Think of S. Eq as an expression for Energy conservation for a Quantum system

Where do Operators come from? A touchy-feely answer

Example: $[p]$ The momentum Extractor (operator):
Consider as an example: Free Particle Wavefunction
$\Psi(\mathrm{x}, \mathrm{t})=\mathrm{Ae}^{\mathrm{i}(\mathrm{kx}-\mathrm{wt})} ; \mathrm{k}=\frac{2 \pi}{\lambda}, \lambda=\frac{h}{p} \Rightarrow k=\frac{p}{\hbar}$
rewrite $\Psi(\mathrm{x}, \mathrm{t})=\mathrm{Ae} \mathrm{e}^{\mathrm{i}\left(\frac{p}{\hbar}-\mathrm{wt}\right)} ; \frac{\partial \Psi(\mathrm{x}, \mathrm{t})}{\partial x}=i \frac{p}{\hbar} \mathrm{Ae}^{\mathrm{i}\left(\frac{p}{\hbar}-\mathrm{wt}\right)}=i \frac{p}{\hbar} \Psi(\mathrm{x}, \mathrm{t})$
$\Rightarrow\left[\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x}\right] \Psi(\mathrm{x}, \mathrm{t})=\mathrm{p} \Psi(\mathrm{x}, \mathrm{t})$

So it is not unreasonable to associate $[\mathrm{p}]=\left[\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x}\right]$ with observable p

Example: Average Momentum of Particle in Rigid Box

- Given the symmetry of the 1D box, we argued last time that <p> = 0 : now some inglorious math to prove it !
- Be lazy, when you can get away with a symmetry argument to solve a problem..do it \& avoid the evil integration \& algebra.....but be sure! $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right) \quad \& \quad \psi^{*}{ }_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)$
$<p>=\int_{-\infty}^{+\infty} \psi^{*}[p] \psi d x=\int_{-\infty}^{\infty} \psi^{*}\left[\frac{\hbar}{i} \frac{d}{d x}\right] \psi d x$
$\langle p\rangle=\frac{\hbar}{i} \frac{2}{L} \frac{n \pi}{L} \int_{-\infty}^{\infty} \sin \left(\frac{n \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) d x$
Since $\int \operatorname{sinax} \operatorname{cosax} \mathrm{dx}=\frac{1}{2 \mathrm{a}} \sin ^{2} a x$...here $\mathrm{a}=\frac{\mathrm{n} \pi}{\mathrm{L}}$
$\Rightarrow\langle p\rangle=\frac{\hbar}{L L}\left[\sin ^{2}\left(\frac{n \pi}{L} x\right]_{x=0}^{x=L}=0\right.$ since $\operatorname{Sin}^{2}(0)=\operatorname{Sin}^{2}(n \pi)=0$
We knew THAT before doing any math !

Quiz 1: What is the <p> for the Quantum Oscillator in its symmetric ground state Quiz 2: What is the <p> for the Quantum Oscillator in its asymmetric first excited state

But what about the <KE> of the Particle in Box?

$<p>=0$ so what about expectation value of $\mathrm{K}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}$?
$<K>=0$ because $<p>=0$; clearly not, since we showed $\mathrm{E}=\mathrm{KE} \neq 0$
Why ? What gives ?
Because $\mathrm{p}_{\mathrm{n}}= \pm \sqrt{2 m E_{n}}= \pm \frac{n \pi \hbar}{L} ; \quad$ " \pm " is the key!
The AVERAGE p $=0$, since particle is moving back \& forth

$$
<\mathrm{KE}>=<\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}>\neq 0 ; \quad \text { not } \frac{<\mathrm{p}^{2}>}{2 m}
$$

Be careful when being "lazy"

Quiz: what about <KE> of a quantum Oscillator?
Does similar logic apply??

Schrodinger Eqn: Stationary State Form

- Recall \rightarrow when potential does not depend on time explicitly $\mathrm{U}(\mathrm{x}, \mathrm{t})$ $=\mathrm{U}(\mathrm{x})$ only... we used separation of x, t variables to simplify $\Psi(\mathrm{x}, \mathrm{t})=$ $\psi(\mathrm{x}) \phi(\mathrm{t}) \&$ broke S. Eq. into two: one with x only and another with t only

$$
\frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+U(x) \psi(x)=E \psi(x)
$$

$$
i \hbar \frac{\partial \phi(t)}{\partial t}=E \phi(t)
$$

How to put Humpty-Dumpty back together ? e.g to say how to go from an expression of $\psi(\mathrm{x}) \rightarrow \Psi(\mathrm{x}, \mathrm{t})$ which describes time-evolution of the overall wave function

Stationary State: Putting Humpty Dumpty Back Togather

Since $\frac{\mathrm{d}}{\mathrm{dt}}[\ln f(t)]=\frac{1}{f(t)} \frac{\mathrm{d} f(t)}{\mathrm{dt}}$
In $\mathrm{i} \hbar \frac{\partial \phi(t)}{\partial \mathrm{t}}=E \phi(t)$, rewrite as $\frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial \mathrm{t}}=\frac{E}{i \hbar}=-\frac{i E}{\hbar}$
and integrate both sides w.r.t. time

$$
\begin{aligned}
& \int_{t=0}^{t=t} \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial \mathrm{t}} d t=\int_{0}^{t}-\frac{i E}{\hbar} d t \Rightarrow \int_{0}^{t} \frac{1}{\phi(t)} \frac{\mathrm{d} \phi(t)}{\mathrm{dt}} d t=-\frac{i E}{\hbar} \\
& \ln \phi(t)-\ln \phi(0)=-\frac{i E}{\hbar} t, \text { now exponentiate both sides } \\
& \Rightarrow \phi(t)=\phi(0) e^{-\frac{i E}{\hbar} t} \quad ; \phi(0)=\text { constant }=\text { initial condition }=1 \text { (e.g) } \\
& \Rightarrow \phi(t)=e^{-\frac{i E}{\hbar} t} \quad \& \text { Thus } \Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) e^{-\frac{i E}{\hbar} t} \text { where } \mathrm{E}=\text { energy of system }
\end{aligned}
$$

Schrodinger Eqn: Stationary State Form

$P(x, t)=\Psi^{*} \Psi=\psi^{*}(x) e^{+\frac{i E}{\hbar} t} \psi(x) e^{-\frac{i E}{\hbar} t}=\psi^{*}(x) \psi(x) e^{\frac{i E}{\hbar} t-\frac{i E}{\hbar} t}=|\psi(x)|^{2}$ In such cases, $\mathrm{P}(\mathrm{x}, \mathrm{t})$ is INDEPENDENT of time.
These are called "stationary" states because Prob is independent of time Examples : Particle in a box (why?)
: Quantum Oscillator (why?)
Total energy of the system depends on the spatial orientation of the system : charteristic of the potential $\mathrm{U}(\mathrm{x}, \mathrm{t})$!

