

Physics 2D Lecture Slides Lecture 24: Feb 28th 2005

Vivek Sharma UCSD Physics

Classical & Quantum Pictures of Harmonic Oscillator compared • Limits of classical vibration \Rightarrow <u>Turning Points</u> Classical oscillator : at $x = \pm A$, changes all KE into potential energy of spring Total energy E ($x = \pm A$) = KE ($x = \pm A$) + U ($x = \pm A$) = $0 + \frac{1}{2}m\omega^2 A^2$ For Quantum Oscillator : Total Energy E = $\frac{1}{2}\hbar\omega$; comparing classical and quantum energies $\Rightarrow \frac{1}{2}\hbar\omega = \frac{1}{2}m\omega^2 A^2$ $\Rightarrow A = \sqrt{\frac{\hbar}{m\omega}}$; Classical oscillator bound within $-A \le x \le A = \sqrt{\frac{\hbar}{m\omega}}$ Cannot venture outside $x = \pm A$ because it has no KE left • But due to Uncertainty principle, the *Quantum* Probability for particle outside classical turning points P(|x|>A) > 0 !!

Observable	Symbol	Associated Operator
position	x	x
momentum	Þ	$\frac{\hbar}{i}\frac{\partial}{\partial x}$
potential energy	$oldsymbol{U}$	U(x)
kinetic energy	K	$-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}$
hamiltonian	Н	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+U($
total energy	E	$i\hbar \frac{\partial}{\partial t}$

Operators
$$\rightarrow$$
 Information Extractors
[p] or $\hat{p} = \frac{\hbar}{i} \frac{d}{dx}$ Momentum Operator
gives the value of average mometum in the following way:
 $\langle p \rangle = \int_{-\infty}^{+\infty} \psi^*(x)[p]\psi(x)dx = \int_{-\infty}^{+\infty} \psi^*(x) \left(\frac{\hbar}{i}\right) \frac{d\psi}{dx} dx$
Similerly:
[K] or $\hat{K} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$ gives the value of average KE
 $\langle K \rangle = \int_{-\infty}^{+\infty} \psi^*(x)[K]\psi(x)dx = \int_{-\infty}^{+\infty} \psi^*(x) \left(-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2}\right) dx$
Similerly
 $\langle U \rangle = \int_{-\infty}^{+\infty} \psi^*(x)[U(x)]\psi(x)dx :$ plug in the U(x) fn for that case
and $\langle E \rangle = \int_{-\infty}^{+\infty} \psi^*(x)[K + U(x)]\psi(x)dx = \int_{-\infty}^{+\infty} \psi^*(x) \left(-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + U(x)\right) dx$
Hamiltonian Operator $[H] = [K] + [U]$
The Energy Operator $[E] = i\hbar \frac{\partial}{\partial t}$ informs you of the average energy

[H] & [E] Operators

- [H] is a function of x
- [E] is a function of tthey are really different operators
- But they produce identical results when applied to any solution of the time-dependent Schrodinger Eq.

•
$$[H]\Psi(x,t) = [E] \Psi(x,t)$$

$$\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + U(x,t)\right]\Psi(x,t) = \left[i\hbar\frac{\partial}{\partial t}\right]\Psi(x,t)$$

• Think of S. Eq as an expression for Energy conservation for a Quantum system

But what about the <KE> of the Particle in Box ? = 0 so what about expectation value of $K = \frac{p^2}{2m}$? < K >= 0 because = 0; clearly not, since we showed $E = KE \neq 0$ Why ? What gives ? Because $p_n = \pm \sqrt{2mE_n} = \pm \frac{n\pi\hbar}{L}$; " \pm " is the key! The AVERAGE p = 0, since particle is moving back & forth $<KE> = <\frac{p^2}{2m}> \neq 0$; not $\frac{<p^2>}{2m}$! Be careful when being "lazy" Quiz: what about <KE> of a quantum Oscillator? Does similar logic apply??

Schrodinger Eqn: Stationary State Form Recall \rightarrow when potential does not depend on time explicitly U(x,t) =U(x) only...we used separation of x,t variables to simplify $\Psi(x,t) = \psi(x) \phi(t)$ & broke S. Eq. into two: one with x only and another with t only $\frac{-\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial^2 x} + U(x)\psi(x) = E \ \psi(x)$ $\frac{\partial \phi(t)}{\partial t} = E \phi(t)$ $\Psi(x,t) = \psi(x)\phi(t)$

How to put **Humpty-Dumpty** back together ? e.g to say how to go from an expression of $\psi(x) \rightarrow \Psi(x,t)$ which describes time-evolution of the overall wave function

Stationary State: Putting Humpty Dumpty Back Togather Since $\frac{d}{dt} [\ln f(t)] = \frac{1}{f(t)} \frac{df(t)}{dt}$ In $i\hbar \frac{\partial \phi(t)}{\partial t} = E\phi(t)$, rewrite as $\frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = \frac{E}{i\hbar} = -\frac{iE}{\hbar}$ and integrate both sides w.r.t. time $\int_{t=0}^{t=1} \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t} dt = \int_{0}^{t} -\frac{iE}{\hbar} dt \Rightarrow \int_{0}^{t} \frac{1}{\phi(t)} \frac{d\phi(t)}{dt} dt = -\frac{iE}{\hbar}$ $\ln \phi(t) - \ln \phi(0) = -\frac{iE}{\hbar}t$, now exponentiate both sides $\Rightarrow \phi(t) = \phi(0)e^{-\frac{iE}{\hbar}t}$; $\phi(0) = \text{constant} = \text{initial condition} = 1$ (e.g) $\Rightarrow \phi(t) = e^{-\frac{iE}{\hbar}t}$ & Thus $\Psi(x,t) = \psi(x)e^{-\frac{iE}{\hbar}t}$ where E = energy of system Schrodinger Eqn: Stationary State Form

 $P(x,t) = \Psi^* \Psi = \psi^*(x) \ e^{\frac{iE}{\hbar}t} \psi(x) \ e^{\frac{iE}{\hbar}t} = \psi^*(x)\psi(x)e^{\frac{iE}{\hbar}t - \frac{iE}{\hbar}t} = |\psi(x)|^2$ In such cases, P(x,t) is INDEPENDENT of time. These are called "stationary" states because Prob is independent of time Examples : Particle in a box (why?) : Quantum Oscillator (why?) Total energy of the system depends on the spatial orientation of the system : charteristic of the potential U(x,t) !