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Physics 2D Lecture  Slides 
Lecture 24: Feb 28th 2005 

Vivek Sharma
UCSD Physics

Simple Harmonic Oscillator:
Quantum and Classical Pictures Compared
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Quantum Picture: Harmonic Oscillator
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Find the Ground state Wave Function (x)
1Find the Ground state Energy E when U(x)=
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Quantum Picture: Harmonic Oscillator
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How to Get C0 & α ?? …Try plugging in the wave-function into
the time-independent Schr. Eqn.
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Time Independent Sch. Eqn & The Harmonic Oscillator
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Quantum Oscillator In Pictures
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Quantum Mechanical Prob for particle
To live outside classical turning points 

Is finite !
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( ) 0 for n=0E KE U x= + >

Classically particle most likely to be at the turning point (velocity=0)
Quantum Mechanically , particle most likely to be at x=x0 for n=0

Classical & Quantum Pictures of Harmonic Oscillator compared

• Limits of classical vibration  ⇒ Turning Points

• But due to Uncertainty principle,  the Quantum Probability for 
particle outside classical turning points P(|x|>A) >0  !! 
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Quantum Oscillator In The Classically Forbidden Territory
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Excited States of The Quantum Oscillator
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Excited States of The Quantum Oscillator

Ground State Energy >0 always As n  ∞ classical and quantum  
probabilities become similar 

Measurement Expectation: Statistics Lesson 
• Ensemble & probable outcome of a single measurement or the 

average outcome of a large # of measurements
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Particle in the Box, n=1, find <x> & Δx ?
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Expectation Values & Operators: More Formally
• Observable: Any particle property that can be measured

– X,P, KE, E or some combination of them,e,g: x2

– How to calculate the probable value of these quantities for a QM state ?

• Operator: Associates an operator with each observable
– Using these Operators, one calculates the average value of that Observable
– The Operator acts on the Wavefunction (Operand) & extracts info about the 

Observable in a straightforward way gets Expectation value for that 
observable
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Operators Information Extractors
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[H] & [E] Operators
• [H] is a function of x 
• [E] is a function of t …….they are really different operators
• But they produce identical results when applied to any solution of the 

time-dependent Schrodinger Eq.

• [H]Ψ(x,t) = [E] Ψ(x,t) 

• Think of S. Eq as an expression for Energy conservation for a 
Quantum system
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Where do Operators come from ?  A touchy-feely answer
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Example: Average Momentum of Particle in Rigid Box 
• Given the symmetry of the 1D box, we argued last time that <p> = 0  

: now some inglorious math to prove it !
– Be lazy, when you can get away with a symmetry argument to solve a 

problem..do it & avoid the evil integration & algebra…..but be sure!
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Schrodinger Eqn: Stationary State Form 

• Recall when potential does not depend on time explicitly U(x,t) 
=U(x) only…we used separation of x,t variables to simplify Ψ(x,t) = 
 ψ(x) φ(t) & broke S. Eq. into two: one with x only and another with 
t only
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Schrodinger Eqn: Stationary State Form 

* * * 2

In such cases, P(x,t) is INDEPENDENT of time.
These are called "stationary" states
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