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Physics 2D Lecture  Slides
Lecture 23: Feb 23nd 2005

Vivek Sharma
UCSD Physics

Finite Potential Barrier
• There are no Infinite Potentials in the real world

– Imagine the cost of as battery with infinite potential diff
• Will cost infinite $ sum + not available at Radio Shack

• Imagine a realistic potential : Large U compared to KE
but not infinite

X=0 X=L

U E=KE

Region I Region II Region III

Classical Picture : A bound particle (no escape) in 0<x<L
Quantum Mechanical Picture : Use ΔE.Δt ≤ h/2π 
Particle can leak out of the Box of finite potential P(|x|>L) ≠0
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Finite Potential Well
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Finite Potential Well: Particle can Burrow Outside Box
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Finite Potential Well: Particle can Burrow Outside Box

Particle can be outside the box but only
for a time Δt ≈ h/ ΔE
ΔE = Energy particle needs to borrow to
Get outside ΔE = U-E + KE
The Cinderella act (of violating E 
Conservation cant last very long

Particle must hurry back (cant be 
caught with its hand inside the cookie-jar) 
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Finite Potential Well: Particle can Burrow Outside Box
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If U>>E  Tiny penetration
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When E=U then solutions blow up

Limits to number of bound states(E )
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Simple Harmonic Oscillator:
Quantum and Classical

m

k

X=0

x

Spring with
Force Const

U(x)
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Particle of mass m within  a potential U(x) 

( )
F(x)=  - 

( )
F(x=a) = -  0,

F(x=b) = 0 , F(x=c)=0  ...But...
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Stable Equilibrium: General Form :
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Quantum Picture: Harmonic Oscillator
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Find the Ground state Wave Function (x)

1
Find the Ground state Energy E when U(x)=
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Two guesses about the simplest Wavefunction:

   1. (x) should be symmetric about x   2. (x) 0 as x

(x) 
    + (x) should be continuous &   = continu

)

o s 

1

u

2
mE x

d

dx

x ! !

!

"

!

!
!

% =

& &'

2

0 0Need to find C & :    

What does this wavefu

My 

nct

(x) =

ion &

guess:

 PDF l

 C ;

ook

 

 like?

x
e

( (! %

Quantum Picture: Harmonic Oscillator
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How to Get C0 & α    ?? …Try plugging in the wave-function into
the time-independent Schr. Eqn.
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Time Independent Sch. Eqn & The Harmonic Oscillator
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 learn about that from the Normalization cond.

SHO: Normalization Condition
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IZED wave function is :

                    (x) =   Ground State Wavefunction

   

Planck's Oscillators were electrons tied by the "spring" of 
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mutually attractive Coulomb Force
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Quantum Oscillator In Pictures

-A +A

C0

Quantum Mechanical Prob for particle
To live outside classical turning points 

Is finite !

-A +A

U

U(x)

( ) 0 for n=0E KE U x= + >

Classically particle most likely to be at the turning point (velocity=0)
Quantum Mechanically , particle most likely to be at x=x0 for n=0

Classical & Quantum Pictures of SHO compared

• Limits of classical vibration : Turning Points (do on
Board)

• Quantum Probability for particle outside classical turning
points P(|x|>A) =16% !!
– Do it on the board (see Example problems in book)
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Excited States of The Quantum Oscillator
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Excited States of The Quantum Oscillator

Ground State Energy >0 always




