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Physics 2D Lecture  Slides
Lecture 22: Feb 22nd 2005

Vivek Sharma
UCSD Physics

Introducing the Schrodinger Equation
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• U(x) = characteristic Potential of the system 
• Different potential for different forces 
• Hence different solutions for the Diff. eqn.
•  characteristic wavefunctions for a particular U(x)
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Schrodinger Eqn: Stationary State Form

• Recall when potential does not depend on time explicitly
– U(x,t) =U(x) only…we used separation of x,t variables to simplify

• Ψ(x,t) =  ψ(x) φ(t)
• broke S. Eq. into two: one with x only and another with t only
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How to put Humpty-Dumpty back together ? e.g to say how to 
go from an expression of ψ(x)→Ψ(x,t) which describes 
time-evolution of the overall wave function 
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Example of a Particle Inside a Box With Infinite Potential

(a) Electron placed between 2 set of electrodes C &
grids G experiences no force in the region
between grids, which are held at Ground Potential

However in the regions between each C & G is a
repelling electric field whose strength depends on
the magnitude of V

(b) If V is small, then electron’s potential energy vs x
has low sloping “walls”

(c) If V is large, the “walls”become very high & steep
becoming infinitely high for V→∞

(d) The straight infinite walls are an approximation of
such a situation

U=∞
U(x) U=∞
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A More Interesting  Potential : Particle In a Box

U(x,t) = ;  x 0,  x L

            U(x,t) = 0  ;  0 < X < 

Write the Form of Potential: Infinite Wall

L

! " #

• Classical Picture:                  
•Particle dances back and forth
•Constant speed, const KE
•Average <P> = 0 
•No restriction on energy value

• E=K+U = K+0
•Particle can not exist outside box 

•Can’t get out because needs to borrow 
  infinite energy  to overcome potential of 
  wall      

U(x)

What happens when the joker 
      is subatomic in size ??

Ψ(x) for Particle Inside 1D Box with Infinite Potential Walls
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Inside the box, no force  U=0 or constant (same thing)
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 (A,B are constants)

Need to figure out values of A, B : How to do that ?
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(Continuity condition at x =L)

n
                            kL = n  k = , 1, 2,3,...
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So what does this say about Energy E ? : 
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E =   Quantized (not Continuous)!
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X=0

Why can’t the 
particle exist 
Outside the box ?
 E Conservation

∞ ∞

X=L
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Quantized Energy levels of Particle in a Box

What About the Wave Function Normalization ?
 n

We will call n  Quantum Number , just like in Bohr's Hydrogen atom
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Wave Functions : Shapes Depend on Quantum # n

Wave Function Probability P(x): Where the 

particle likely to be 

Zero Prob

Where in The World is Carmen San Diego?
• We can only guess the

probability of finding the particle
somewhere in x
– For n=1 (ground state)

particle most likely at x = L/2
– For n=2 (first excited state)

particle most likely at L/4, 3L/4
• Prob. Vanishes at x = L/2

& L
– How does the

particle get from just
before x=L/2 to just
after?

» QUIT thinking
this way,
particles don’t
have trajectories

» Just probabilities
of being
somewhere

Classically, where is particle most likely to be
?

Equal prob. of being anywhere inside the Box
        NOT SO says Quantum Mechanics!
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Remember Sesame Street ?

This particle in the box is
brought to you by the letter

n
Its the Big Boss
Quantum Number

How to Calculate the QM prob of Finding Particle in  Some region in Space
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When The Classical & Quantum Pictures Merge: n→∞

But one issue is irreconcilable: 
Quantum Mechanically the particle can not have E = 0  

This is a consequence of the Uncertainty Principle 
The particle moves around with KE inversely proportional to the Length 

Of the 1D Box 

Finite Potential Barrier
• There are no Infinite Potentials in the real world

– Imagine the cost of as battery with infinite potential diff
• Will cost infinite $ sum + not available at Radio Shack

• Imagine a realistic potential : Large U compared to KE
but not infinite

X=0 X=L

U E=KE

Region I Region II Region III

Classical Picture : A bound particle (no escape) in 0<x<L
Quantum Mechanical Picture : Use ΔE.Δt ≤ h/2π 
Particle can leak out of the Box of finite potential P(|x|>L) ≠0
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Finite Potential Well
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Finite Potential Well: Particle can Burrow Outside Box

Particle can be outside the box but only
for a time Δt ≈ h/ ΔE
ΔE = Energy particle needs to borrow to
Get outside ΔE = U-E + KE
The Cinderella act (of violating E 
Conservation cant last very long

Particle must hurry back (cant be 
caught with its hand inside the cookie-jar) 

1
Penetration Length  = =

2m(U-E)

If U>>E  Tiny penetration

If U  0 
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Finite Potential Well: Particle can Burrow Outside Box
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Simple Harmonic Oscillator:
Quantum and Classical
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Force Const

U(x)

xa b
c

Stable 
Stable 

Unstable 
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Particle of mass m within  a potential U(x) 

( )
F(x)=  - 

( )
F(x=a) = -  0,

F(x=b) = 0 , F(x=c)=0  ...But...

look at the Cur
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Quantum Picture: Harmonic Oscillator
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Quantum Picture: Harmonic Oscillator
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How to Get C0 & α    ?? …Try plugging in the wave-function into
the time-independent Schr. Eqn.
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Time Independent Sch. Eqn & The Harmonic Oscillator
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Quantum Oscillator In Pictures

-A +A

C0

Quantum Mechanical Prob for particle
To live outside classical turning points 

Is finite !

-A +A

U

U(x)

( ) 0 for n=0E KE U x= + >

Classically particle most likely to be at the turning point (velocity=0)
Quantum Mechanically , particle most likely to be at x=x0 for n=0

Classical & Quantum Pictures of SHO compared

• Limits of classical vibration : Turning Points (do on
Board)

• Quantum Probability for particle outside classical turning
points P(|x|>A) =16% !!
– Do it on the board (see Example problems in book)
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Excited States of The Quantum Oscillator
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Excited States of The Quantum Oscillator

Ground State Energy >0 always


