

Physics 2D Lecture Slides Lecture 22: Feb 22nd 2005

Vivek Sharma
UCSD Physics

Introducing the Schrodinger Equation

- $\mathrm{U}(\mathrm{x})=$ characteristic Potential of the system
- Different potential for different forces
- Hence different solutions for the Diff. eqn.
- \rightarrow characteristic wavefunctions for a particular $\mathrm{U}(\mathrm{x})$

Schrodinger Eqn: Stationary State Form

- Recall \rightarrow when potential does not depend on time explicitly
- $U(x, t)=U(x)$ only... we used separation of x, t variables to simplify
- $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \phi(\mathrm{t})$
- broke S. Eq. into two: one with x only and another with t only

$$
\frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+U(x) \psi(x)=E \psi(x)
$$

$$
\Psi(x, t)=\psi(x) \phi(t)
$$

$i \hbar \frac{\partial \phi(t)}{\partial t}=E \phi(t)$

How to put Humpty-Dumpty back together ? e.g to say how to go from an expression of $\psi(x) \rightarrow \Psi(x, t)$ which describes time-evolution of the overall wave function

Example of a Particle Inside a Box With Infinite Potential

$\Psi(x)$ for Particle Inside 1D Box with Infinite Potential Walls

Inside the box, no force $\Rightarrow \mathrm{U}=0$ or constant (same thing)
$\Rightarrow \frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}+0 \psi(x)=E \psi(x)$
$\Rightarrow \frac{d^{2} \psi(x)}{d x^{2}}=-k^{2} \psi(x) ; k^{2}=\frac{2 m E}{\hbar^{2}}$
or $\frac{d^{2} \psi(x)}{d x^{2}}+k^{2} \psi(x)=0 \Leftarrow$ figure out what $\psi(\mathrm{x})$ solves this diff eq.
In General the solution is $\psi(x)=A \operatorname{sinkx}+B \operatorname{coskx}$ (A, B are constants)
Need to figure out values of A, B : How to do that?
Apply BOUNDARY Conditions on the Physical Wavefunction
We said $\psi(x)$ must be continuous everywhere
So match the wavefunction just outside box to the wavefunction value just inside the box
$\Rightarrow \operatorname{At~} \mathrm{x}=0 \Rightarrow \psi(x=0)=0 \& \operatorname{At~} \mathrm{x}=\mathrm{L} \Rightarrow \psi(x=L)=0$
$\therefore \psi(x=0)=B=0$ (Continuity condition at $\mathrm{x}=0$)
$\& \psi(x=L)=0 \Rightarrow \mathrm{~A} \operatorname{Sin} \mathrm{~kL}=0$ (Continuity condition at $\mathrm{x}=\mathrm{L}$)

$$
\Rightarrow \mathrm{kL}=\mathrm{n} \pi \Rightarrow \mathrm{k}=\frac{\mathrm{n} \pi}{\mathrm{~L}}, n=1,2,3, \ldots \infty
$$

Why can't the particle exist
Outside the box ?
\rightarrow E Conservation

So what does this say about Energy E ? : $\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}$ Quantized (not Continuous)!

Quantized Energy levels of Particle in a Box

What About the Wave Function Normalization?

The particle's Energy and Wavefunction are determined by a number n
We will call $n \rightarrow$ Quantum Number, just like in Bohr's Hydrogen atom
What about the wave functions corresponding to each of these energy states?

$$
\begin{aligned}
\psi_{\mathrm{n}} & =A \sin (k x)=A \sin \left(\frac{n \pi x}{L}\right) & & \text { for } 0<\mathrm{x}<\mathrm{L} \\
& =0 & & \text { for } \mathrm{x} \geq 0, \mathrm{x} \geq \mathrm{L}
\end{aligned}
$$

Normalized Condition :

$1=\int_{0}^{\mathrm{L}} \psi_{\mathrm{n}}{ }^{*} \psi_{\mathrm{n}} d x=A^{2} \int_{0}^{L} \operatorname{Sin}^{2}\left(\frac{n \pi x}{L}\right) \quad$ Use $2 \operatorname{Sin}^{2} \theta=1-2 \operatorname{Cos} 2 \theta$
$1=\frac{A^{2}}{2} \int_{0}^{L}\left(1-\cos \left(\frac{2 n \pi x}{L}\right)\right)$ and since $\int \cos \theta=\sin \theta$
$1=\frac{A^{2}}{2} L \Rightarrow A=\sqrt{\frac{2}{L}}$
So $\psi_{\mathrm{n}}=\sqrt{\frac{2}{L}} \sin (k x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad \ldots$ What does this look like?

Wave Functions: Shapes Depend on Quantum \# n

Where in The World is Carmen San Diego?

- We can only guess the probability of finding the particle somewhere in x
- For $\mathrm{n}=1$ (ground state) particle most likely at x = L/2
- For $n=2$ (first excited state) particle most likely at L/4, 3L/4
- Prob. Vanishes at $\mathrm{x}=\mathrm{L} / 2$ \& L
- How does the particle get from just before $\mathrm{x}=\mathrm{L} / 2$ to just after?
» QUIT thinking this way, particles don't have trajectories
» Just probabilities of being
somewhere

Classically, where is particle most likely to be ?
Equal prob. of being anywhere inside the Box NOT SO says Quantum Mechanics!

Remember Sesame Street?

How to Calculate the QM prob of Finding Particle in Some region in Space
Consider $\mathrm{n}=1$ state of the particle
Ask : What is $\mathrm{P}\left(\frac{\mathrm{L}}{4} \leq x \leq \frac{3 L}{4}\right)$?
$\mathrm{P}=\int_{\frac{L}{4}}^{\frac{3 L}{4}}\left|\psi_{1}\right|^{2} d x=\frac{2}{L} \int_{\frac{L}{4}}^{\frac{3 L}{4}} \sin ^{2} \frac{\pi x}{L} d x=\left(\frac{2}{L}\right) \cdot \frac{1}{2} \int_{\frac{L}{4}}^{\frac{3 L}{4}}\left(1-\cos \frac{2 \pi x}{L}\right) d x$
$P=\frac{1}{L}\left[\frac{L}{2}-\right]\left[\frac{L}{2 \pi} \sin \frac{2 \pi x}{L}\right]_{L / 4}^{3 L / 4}=\frac{1}{2}-\frac{1}{2 \pi}\left(\sin \frac{2 \pi}{L} \cdot \frac{3 L}{4}-\sin \frac{2 \pi}{L} \cdot \frac{L}{4}\right)$
$P=\frac{1}{2}-\frac{1}{2 \pi}(-1-1)=0.818 \Rightarrow 81.8 \%$

Classically $\Rightarrow 50 \%$ (equal prob over half the box size)
\Rightarrow Substantial difference between Classical \& Quantum predictions

When The Classical \& Quantum Pictures Merge: $\mathrm{n} \rightarrow \infty$

But one issue is irreconcilable:
Quantum Mechanically the particle can not have $\mathrm{E}=0$
This is a consequence of the Uncertainty Principle
The particle moves around with KE inversely proportional to the Length Of the 1D Box

Finite Potential Barrier

- There are no Infinite Potentials in the real world - Imagine the cost of as battery with infinite potential diff
- Will cost infinite \$ sum + not available at Radio Shack

Imagine a realistic potential : Large U compared to KE but not infinite

Classical Picture : A bound particle (no escape) in $0<x<L$ Quantum Mechanical Picture : Use $\Delta \mathrm{E} . \Delta \mathrm{t} \leq \mathrm{h} / 2 \pi$ Particle can leak out of the Box of finite potential $P(|x|>L) \neq 0$

Finite Potential Well

$$
\begin{aligned}
& \quad \frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}+U \psi(x)=E \psi(x) \\
& \Rightarrow \quad \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}(U-E) \psi(x) \\
& =\alpha^{2} \psi(x) ; \alpha=\sqrt{\frac{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}{\hbar^{2}}} \\
& \Rightarrow \text { General Solutions }: \psi(x)=A e^{+\alpha x}+B e^{-\alpha x} \\
& \text { Require finiteness of } \psi(x) \\
& \Rightarrow \psi(x)=A e^{+\alpha x} \ldots . . \mathrm{x}<0 \quad \text { (region I) } \\
& \psi(x)=A e^{-\alpha x} \quad \ldots . . \mathrm{x}>\mathrm{L} \quad \text { (region III) }
\end{aligned}
$$

Again, coefficients A \& B come from matching conditions at the edge of the walls $(\mathrm{x}=0, \mathrm{~L})$
But note that wave fn at $\psi(x)$ at $(\mathrm{x}=0, \mathrm{~L}) \neq 0!!$ (why?)
Further require Continuity of $\psi(x)$ and $\frac{d \psi(x)}{d x}$
These lead to rather different wave functions

Finite Potential Well: Particle can Burrow Outside Box

Finite Potential Well: Particle can Burrow Outside Box

Particle can be outside the box but only for a time $\Delta t \approx h / \Delta E$
$\Delta \mathrm{E}=$ Energy particle needs to borrow to

Get outside $\Delta \mathrm{E}=\mathrm{U}-\mathrm{E}+\mathrm{KE}$
The Cinderella act (of violating E Conservation cant last very long

Particle must hurry back (cant be caught with its hand inside the cookie-jar)
Penetration Length $\delta=\frac{1}{\alpha}=\frac{\hbar}{\sqrt{2 m(U-E)}}$

If $\mathrm{U} \gg \mathrm{E} \Rightarrow$ Tiny penetration
If $\mathrm{U} \rightarrow \infty \Rightarrow \delta \rightarrow 0$

Finite Potential Well: Particle can Burrow Outside Box

$$
\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 m(L+2 \delta)^{2}}, n=1,2,3,4 \ldots
$$

When $\mathrm{E}=\mathrm{U}$ then solutions blow up
\Rightarrow Limits to number of bound states $\left(\mathrm{E}_{\mathrm{n}}<U\right)$
When $\mathrm{E}>\mathrm{U}$, particle is not bound and can get either reflected or transmitted across the potential "barrier"

Simple Harmonic Oscillator: Quantum and Classical

Particle of mass m within a potential $U(x)$ $\overrightarrow{\mathrm{F}}(\mathrm{x})=-\frac{d U(x)}{d x}$
$\left.\overrightarrow{\mathrm{~F}}(\mathrm{x}=\mathrm{a})=-\frac{d U(x)}{d x} \right\rvert\,=0$
$\overrightarrow{\mathrm{F}}(\mathrm{x}=\mathrm{b})=0, \overrightarrow{\mathrm{~F}}(\mathrm{x}=\mathrm{c})=0 \quad \ldots$ But... look at the Curvature:

Stable Equilibrium: General Form :
$\mathrm{U}(\mathrm{x})=\mathrm{U}(\mathrm{a})+\frac{1}{2} k(x-a)^{2}$
Rescale $\Rightarrow U(x)=\frac{1}{2} k(x-a)^{2}$
Motion of a Classical Oscillator (ideal)
Ball originally displaced from its equilibirium position, motion confined between $\mathrm{x}=0 \& \mathrm{x}=\mathrm{A}$
$\mathrm{U}(\mathrm{x})=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega^{2} x^{2} ; \omega=\sqrt{\frac{k}{m}}=$ Ang. Freq $E=\frac{1}{2} k A^{2} \Rightarrow$ Changing A changes E E can take any value \& if $\mathrm{A} \rightarrow 0, \mathrm{E} \rightarrow 0$
Max. KE at $\mathrm{x}=0, \mathrm{KE}=0$ at $\mathrm{x}= \pm \mathrm{A}$

Quantum Picture: Harmonic Oscillator

Find the Ground state Wave Function $\psi(\mathrm{x})$
Find the Ground state Energy E when $\mathrm{U}(\mathrm{x})=\frac{1}{2} m \omega^{2} x^{2}$
Time Dependent Schrodinger Eqn: $\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x)$
$\Rightarrow \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}\left(E-\frac{1}{2} m \omega^{2} x^{2}\right) \psi(x)=0$ What $\psi(\mathrm{x})$ solves this?

Two guesses about the simplest Wavefunction:

1. $\psi(\mathrm{x})$ should be symmetric about $\mathrm{x} \quad 2 . \psi(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$
$+\psi(\mathrm{x})$ should be continuous $\& \frac{d \psi(\mathrm{x})}{d x}=$ continuous

My guess: $\psi(\mathrm{x})=\mathrm{C}_{0} e^{-\alpha x^{2}}$; Need to find $\mathrm{C}_{0} \& \alpha$:

What does this wavefunction \& PDF look like?

Quantum Picture: Harmonic Oscillator

How to Get $\mathrm{C}_{0} \& \alpha \quad$?? ... Try plugging in the wave-function into the time-independent Schr. Eqn.

Time Independent Sch. Eqn \& The Harmonic Oscillator

Master Equation is : $\frac{\partial^{2} \psi(x)}{\partial x^{2}}=\frac{2 m}{\hbar^{2}}\left[\frac{1}{2} m \omega^{2} x^{2}-E\right] \psi(x)$
Since $\psi(x)=C_{0} e^{-\alpha x^{2}}, \frac{d \psi(x)}{d x}=C_{0}(-2 \alpha x) e^{-\alpha x^{2}}$,

$$
\begin{aligned}
& \frac{d^{2} \psi(x)}{d x^{2}}=C_{0} \frac{d(-2 \alpha x)}{d x} e^{-\alpha x^{2}}+C_{0}(-2 \alpha x)^{2} e^{-\alpha x^{2}}=C_{0}\left[4 \alpha^{2} x^{2}-2 \alpha\right] e^{-\alpha x^{2}} \\
& \Rightarrow C_{0}\left[4 \alpha^{2} x^{2}-2 \alpha\right] e^{-\alpha x^{2}}=\frac{2 m}{\hbar^{2}}\left[\frac{1}{2} m \omega^{2} x^{2}-E\right] C_{0} e^{-\alpha x^{2}}
\end{aligned}
$$

Match the coeff of x^{2} and the Constant terms on LHS \& RHS
$\Rightarrow 4 \alpha^{2}=\frac{2 m}{\hbar^{2}} \frac{1}{2} m \omega^{2}$ or $\alpha=\frac{m \omega}{2 \hbar}$
\& the other match gives $2 \alpha=\frac{2 m}{\hbar^{2}} E$, substituing $\alpha \Rightarrow$ $\mathrm{E}=\frac{1}{2} \hbar \omega=\mathrm{hf} \quad$!!!!......(Planck's Oscillators)
What about C_{0} ? We learn about that from the Normalization cond.

SHO: Normalization Condition

$$
\begin{aligned}
& \int_{-\infty}^{+\infty}\left|\psi_{0}(x)\right|^{2} d x=1=\int_{-\infty}^{+\infty} C_{0}^{2} e^{\frac{-m \omega x^{2}}{\hbar}} d x \\
& \text { Since } \int_{-\infty}^{+\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} \\
& \quad \mathrm{a}=\frac{m \omega}{\hbar} \text { and using the identity above } \\
& \Rightarrow \quad C_{0}=\left[\frac{m \omega}{\pi \hbar}\right]^{\frac{1}{4}}
\end{aligned}
$$

Hence the Complete NORMALIZED wave function is :

has energy $E=h f$

Planck's Oscillators were electrons tied by the "spring" of the
mutually attractive Coulomb Force

Quantum Oscillator In Pictures	
$E=K E+U(x)>0$ for $\mathrm{n}=0$	Quantum Mechanical Prob for particle To live outside classical turning points Is finite !
${ }_{\text {Position }}^{+ \text {A }}$	-A +A
Classically particle most likely to be at the turning point (velocity=0) Quantum Mechanically, particle most likely to be at $\mathrm{x}=\mathrm{x}_{0}$ for $\mathrm{n}=0$	

Classical \& Quantum Pictures of SHO compared

- Limits of classical vibration : Turning Points (do on Board)
- Quantum Probability for particle outside classical turning points $\mathrm{P}(|\mathrm{x}|>\mathrm{A})=16 \%$!!
- Do it on the board (see Example problems in book)

Excited States of The Quantum Oscillator

$\psi_{n}(x)=C_{n} H_{n}(x) e^{-\frac{m \omega x^{2}}{2 \hbar}} ;$
$H_{n}(x)=$ Hermite Polynomials with
$\mathrm{H}_{0}(\mathrm{x})=1$
$\mathrm{H}_{1}(\mathrm{x})=2 \mathrm{x}$
$\mathrm{H}_{2}(\mathrm{x})=4 \mathrm{x}^{2}-2$
$\mathrm{H}_{3}(\mathrm{x})=8 \mathrm{x}^{3}-12 x$
$\mathrm{H}_{\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} e^{x^{2}} \frac{d^{n} e^{-x^{2}}}{d x^{n}}$
and
$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega=\left(n+\frac{1}{2}\right) h f$

Again $\mathrm{n}=0,1,2,3 \ldots \infty$ Quantum \#

Excited States of The Quantum Oscillator

Ground State Energy >0 always

