

How to Calculate the QM prob of Finding Particle in Some region in Space
Consider n =1 state of the particle
Ask : What is P
$$(\frac{L}{4} \le x \le \frac{3L}{4})$$
?
P $= \int_{\frac{L}{4}}^{\frac{3L}{4}} |\psi_1|^2 dx = \frac{2}{L} \int_{\frac{L}{4}}^{\frac{3L}{4}} \sin^2 \frac{\pi x}{L} dx = (\frac{2}{L}) \cdot \frac{1}{2} \int_{\frac{L}{4}}^{\frac{3L}{4}} (1 - \cos \frac{2\pi x}{L}) dx$
 $P = \frac{1}{L} [\frac{L}{2} -] [\frac{L}{2\pi} \sin \frac{2\pi x}{L}]_{L/4}^{3L/4} = \frac{1}{2} - \frac{1}{2\pi} (\sin \frac{2\pi}{L} \cdot \frac{3L}{4} - \sin \frac{2\pi}{L} \cdot \frac{L}{4})$
 $P = \frac{1}{2} - \frac{1}{2\pi} (-1 - 1) = 0.818 \Rightarrow 81.8\%$
Classically \Rightarrow 50% (equal prob over half the box size)
 \Rightarrow Substantial difference between Classical & Quantum predictions

