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Introducing the Schrodinger Equation

oW (x,¢)
ot

+UX)¥Y(x,t)=ih—————=

U(x) = characteristic Potential of the system

Different potential for different forces

Hence different solutions for the Diff. eqn.

—> characteristic wavefunctions for a particular U(x)




Schrodinger Eqgn: Stationary State Form

» Recall=> when potential does not depend on time explicitly
— U(x,t) =U(x) only...we used separation of x,t variables to simplify
 W(xD = Y(x) o(t)

* broke S. Eq. into two: one with x only and another with t only

-h* 'y (x)

m —r tUW () =E y(x)

Y (x,0) =y (x)o(0)

How to put Humpty-Dumpty back together ? e.g to say how to
go from an expression of y(x)—"¥(x,t) which describes

time-evolution of the overall wave function

Example of a Particle Inside a Box With Infinite Potential

(a) Electron (a) Electron placed between 2 set of electrodes C &
-/C| \a o/ grids G experiences no force in the region
between grids, which are held at Ground Potential

However in the regions between each C & G is a

i -
= repelling electric field whose strength depends on
(b) the magnitude of V
ggéergya' (b) If V is small, then electron’s potential energy vs x
| has low sloping “walls”
ca (c) If V is large, the “walls”become very high & steep
(o) becoming infinitely high for V—eo
Botential (d) The straight infinite walls are an approximation of
energy such a situation
‘ ‘
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x U(X) 1 U=oo




A More Interesting Potential : Particle In a Box

Uux) &

Write the Form of Potential: Infinite Wall
Ux,t)=o0; x<0, x=2L
Ux,t)=0 ; 0<X<L

What happens when the joker

1s subatomic in size ??

Y(x) for Particle Inside 1D Box with Infinite Potential Walls

Inside the box, no force = U=0 or constant (same thing)

=

-0 dPy(x)
2m  dx’

+0 W) =E y(x)
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In General the solution is y(x) = A4 sinkx+ B coskx (A,B are constants)
Need to figure out values of A, B : How to do that ?

Why can’t the
particle exist
Outside the box ?
- E Conservation

o0 [e o]

< figure out what y(x) solves this diff eq.

Apply BOUNDARY Conditions on the Physical Wavefunctionl

We said y(x) must be continuous everywhere

So match the wavefunction just outside box to the wavefunction value
just inside the box

=SAtx=0 =2y ((x=0)=0 &Atx=L y(x=L)=0

s Y(x=0)=B=0 (Continuity condition at x =0) L

& y(x=L)=0 = A SinkL =0 (Continuity condition at x =L) X=0 X=

So what does this say about Energy E ? :

't
2ml’

= kL=n7 = k= %,n=l,2,3,...oo

Quantized (not Continuous)!




Quantized Energy levels of Particle in a Box

Energy
V> oo
n
25E, 5
En= n2E1
242
16E, 4 E=I°H
2mlL?
9E, 3
4E, — ° 2
E, — 1

What About the Wave Function Normalization ?
The particle's Energy and Wavefunction are determined by a number n
We will calln — Quantum Number , just like in Bohr's Hydrogen atom

What about the wave functions corresponding to each of these energy states?

. = Asin(kx) = Asin(me) for O<x <L

=0 forx >0,x>L

Normalized Condition :

IL; L
1= [, 'y,dv= Azjsmz(’”z—x) [Use 2Sin’0 = 1-2Cos26]
0 0

A% 2nmwx . .
I=— | 1—cos( ) | and since Jcos 6 =sin0
29 I

2
2
2
So =, |—sin
vom [

L
kx) = \/% sin(me) ...What does this look like?




Wave Functions : Shapes Depend on Quantum # n

78 _ v § Probability P(x): Where the

\J2/L o/ particle likely to be
1 1
0| L/3 2L/3 L X 0 L3 2f/3 L %
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N2/L | o/l  Zero Prob
' N
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Where in The World is Carmen San Diego?

We can only guess the Y g
probability of finding the particle
somewhere in x 2/L L
— For n=1 (ground state)
particle most likely at x = L/2 N| -
— For n=2 (first excited state) 0 L/2 L X
particle most likely at L/4, 3L/4
e Prob. Vanishes at x = L/2 2
&L V;
— How does the
particle get from just 2/LL
before x=L/2 to just
after? = =
» QUIT thinking 0 L x
this way,

particles don'’t ; ; ; .
EWN S een--i Classically, where is particle most likely to be
» Just probabilities ?
of being
somewhere

NOT SO says Quantum Mechanics!

Equal prob. of being anywhere inside the Box







When The Classical & Quantum Pictures Merge: n—oo

2

Y
Quantum-mechanical
distribution
Classical distribution
____________________ 1
P= T O<x<L
0 L X

But one issue is irreconcilable:
Quantum Mechanically the particle can not have E =0
This is a consequence of the Uncertainty Principle
The particle moves around with KE inversely proportional to the Length
Of the 1D Box

Finite Potential Barrier

* There are no Infinite Potentials in the real world
— Imagine the cost of as battery with infinite potential diff

» Will cost infinite $ sum + not available at Radio Shack

» Imagine a realistic potential : Large U compared to KE
but not infinite

Region I Region II Region III

Y] E=KE

X=0 X=L

Classical Picture : A bound particle (no escape) in O<x<L
Quantum Mechanical Picture : Use AE.At < h/21
Particle can leak out of the Box of finite potential P(|x|>L) #0




Finite Potential Well

-1 dy(x)
o +UW(x)=E
o di? v(x)=E y(x)

sy _om
dxz - hz (U E)l//(x)

oy o D

=General Solutions : Y (x) = Ae"* + Be **
Require finiteness of y(x)

+ox

=Sy(x)=4e™ ... x<0 (regionI)
y(x)=Ae™ ...x>L (region III)

Again, coefficients A & B come from matching conditions
at the edge of the walls (x =0, L)
But note that wave fn at y(x) at (x=0,L)#0!! (why?)
dy (x)

dx
These lead to rather different wave functions

Further require Continuity of y(x) and

Finite Potential Well: Particle can Burrow Outside Box

W Y2

AN e e N A%AS

Vs Y2




Finite Potential Well: Particle can Burrow Outside Box

» Particle can be outside the box but only
Y AVAVANS for a time At =h/ AE
’ ’ ) AE = Energy particle needs to borrow to
vi NN\ Get outside AE = U-E + KE
= L x | The Cinderella act (of violating E
w2 Conservation cant last very long
i N
© L * | Particle must hurry back (cant be
caught with its hand inside the cookie-jar)

| h
Penetration Length 6 = —=———
. o 2m(U-E)

If U>>E = Tiny penetration
IfU 500= 6§ 50

Finite Potential Well: Particle can Burrow Outside Box
1 h

Penetration Length 6 = —=———
. o 2m(U-E)

If U>>E = Tiny penetration
IfU 500= 6§ >0

n=12,3,4..

" 2m(L+268)
When E=U then solutions blow up
= Limits to number of bound states(E, <U)
When E>U, particle is not bound and can get either

reflected or transmitted across the potential "barrier"




Simple Harmonic Oscillator:
Quantum and Classical

Spring with
Force Const

A
Unstable U(X) Stable Equilibrium: General Form :

U(x) =U(a)+%k(x —a)’

Rescale = U(x) = %k(x —a)’
c / - |M0ti0n of a Classical Oscillator (idea1)|
7
1

Ball originally displaced from its equilibirium

1
1
1
1
1
1
1
a_ b
Stable

Stable position, motion confined between x=0 & x=A

U(x):lkxz = lmafxz;a) = \/z = Ang. Freq
2 2 m

E= %kA2 = Changing A changes E

E can take any value & if A —>0,E —0
Max. KE atx =0, KE=0atx=x A




Quantum Picture: Harmonic Oscillator
Find the Ground state Wave Function y(x)

Find the Ground state Energy E when U(x):%mwzx2

2 2
S e +lmw2le//(x) =F y(x)

Time Dependent Schrodinger Eqn: -
2m Jd'x 2

2
dy) Z;(zx) = il_T(E —%mcozx2 Y (x)=0| What y(x) solves this?

Two guesses about the simplest Wavefunction:
1. y(x) should be symmetric about x 2. y(x) > 0asx —> oo

+ y(x) should be continuous & % = continuous

My guess: ¥/ (x) = Coe'““z;Need to find C, & ¢ :

What does this wavefunction & PDF look like?

Quantum Picture: Harmonic Oscillator

P(x) = C2 e 2"

C> ¢

p(x) = Ce™

X

How to Get Cy & o= ?? ...Try plugging in the wave-function into
the time-independent Schr. Eqn.
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Time Independent Sch. Eqn & The Harmonic Oscillator

9’ 2m 1
;’;ﬁx) = S mo’x’ ~Ely(x)

Since y(x) = C,e ™, % = C,(-20x)e™ ™,
X

Master Equation is :

Sy _ [ d200) o
dx? O dx

= ¢ [0 Pl =22\ mais |- ElC,e

Match the coeff of x> and the Constant terms on LHS & RHS

=40’ :2—’:1lma)2 or a=2%
2 2h

& the other match gives 2a=2h—’:1E , substituing o0 =

=%ha) =hf  IM......(Planck's Oscillators)

What about C; ? We learn about that from the Normalization cond.

+Cy(—2ax) e ™ = C,[4a’x* —2ale™™

SHO: Normalization Condition

Mass m
in circular
orbit
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Quantum Oscillator In Pictures

Quantum Mechanical Prob for particle
To live outside classical turning points

E=KE+U(x)>0 for n=0

Is finite !
U() Y
:&.V
g
5]
=
% / L CO Exponential
‘5 U = 5 Kx<
________ ~l_Eo [ C | |
1 : |
: : | |
! ! x | | x
A +A
Posituon -A A

Classically particle most likely to be at the turning point (velocity=0)
Quantum Mechanically , particle most likely to be at x=x,, for n=0

Classical & Quantum Pictures of SHO compared

* Limits of classical vibration : Turning Points (do on
Board)

* Quantum Probability for particle outside classical turning
points P(|x|>A) =16% !!

— Do it on the board (see Example problems in book)
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Excited States of The Quantum Oscillator

m{ux2

v,0)=CH,(x)e * ;
H, (x)= Hermite Polynomials
with
H,(x)=1
H,(x)=2x
H, (x)=4x" -2
H,(x)=8x" —12x
d'e™
dx"

H, (x)=(-1)"e"

and

E =+ %)hw =(n+ %)hf

Again n=0,1,2,3...c0 Quantum #

Excited States of The Quantum Oscillator
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