

Where are the electrons inside the atom?

Early Thought: "Plum pudding" model \rightarrow Atom has a homogenous distribution of Positive charge with electrons embedded in them

- How to test these hypotheses? \rightarrow Shoot "bullets" at the atom and watch their trajectory. What Kind of bullets ?
\cdot Indestructible charged bullets \rightarrow Ionized He^{++}atom $=\alpha^{++}$particles $\cdot \mathrm{Q}=+2 \mathrm{e}$, Mass $\mathrm{M}_{\alpha}=4 \mathrm{amu} \gg \mathrm{m}_{\mathrm{e}}, \mathrm{V}_{\alpha}=2 \times 10^{7} \mathrm{~m} / \mathrm{s}$ (non-relavistic) [charged to probe charge \& mass distribution inside atom]

Plum Pudding Model of Atom

- Non-relativistic mechanics $\left(\mathrm{V}_{\alpha} / \mathrm{c}=0.1\right)$
- In Plum-pudding model, α-rays hardly scatter because
- Positive charge distributed over size of atom $\left(10^{-10} \mathrm{~m}\right)$
- $M_{\alpha} \gg M_{e}$ (like moving truck hits a bicycle)
- \rightarrow predict α-rays will pass thru array of atoms with little scatter $\left(\sim 1^{\circ}\right)$

Need to test this hypothesis \rightarrow Ernest Rutherford

Probing Within an Atom with α Particles

- Most α particles pass thru gold foil with nary a deflection
- SOME $\left(\cong 10^{-4}\right)$ scatter at LARGE angles Φ
- Even fewer scatter almost backwards \rightarrow Why

Rutherford Discovers Nucleus (Nobel Prize)

Force on α-particle due to heavy Nucleus

- Outside radius $\mathrm{r}=\mathrm{R}, \mathrm{F} \propto \mathrm{Q} / \mathrm{r}^{2}$
- Inside radius $r<R, F \propto q / r^{2}=\mathrm{Qr} / \mathrm{R}^{2}$
-Maximum force at radius $\mathrm{r}=\mathrm{R}$

α particle trajectory is hyperbolic Scattering angle is related to impact par. Impact Parameter $b=\left(\frac{k q_{\alpha} Q}{m_{\alpha} v_{\alpha}^{2}}\right)\left(\cot \frac{\theta}{2}\right)$

Rutherford Scattering \& Size of Nucleus

(a)

(b)

distance of closest appoach $\propto \mathrm{r}$ size of nucleus
Kinetic energy of $\alpha=\mathrm{K}_{\alpha}=\frac{1}{2} m_{\alpha} \nu_{\beta}^{2}$
α particle will penetrate thru a radius r until all its kinetic energy is used up to do work AGAINST the Coulomb potential of the Nucleus:
$\mathrm{K}_{\alpha}=\frac{1}{2} m_{\alpha} v_{\beta}^{2}=8 \mathrm{MeV}=k \frac{(Z e)(2 e)}{r}$
$\Rightarrow \quad r=\frac{2 k Z e^{2}}{K_{\alpha}}$
For $\mathrm{K}_{\alpha}=7.7 . \mathrm{MeV}, \mathrm{Z}_{\mathrm{Al}}=13$
$\Rightarrow \quad r=\frac{2 k Z e^{2}}{K_{\alpha}}=4.9 \times 10^{-15} \mathrm{~m}$
Size of Nucleus $=10^{-15} \mathrm{~m}$
Size of Atom $=10^{-10} \mathrm{~m}$

Dimension Matters !

Size of Nucleus $=10^{-15} \mathrm{~m}$
Size of Atom $=10^{-10} \mathrm{~m}$
-how are the electrons located inside an atom
-How are they held in a stable fashion
-necessary condition for us to exist !
-All these discoveries will require new experiments and observations

Continuous \& Discrete spectra of Elements

Hot blackbody

a Continuous spectrum
c Emission line spectrum

Visible Spectrum of Sun Through a Prism

Emission \& Absorption Line Spectra of Elements

Source of
wavelengths
λ_{1} and λ_{2}
$\left(\lambda_{2}>\lambda_{1}\right)$
(a)

Emission \& Absorption Line Spectrum of Elements

-Emission line appear dark because of photographic exposure

Absorption spectrum of Na
While light passed thru Na vapor
is absorbed at specific λ

Spectral Observations: series of lines with a pattern

- Empirical observation (by trial \& error)
- All these series can be summarized in a simple formula

$$
\frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right), n_{f}>n_{i}, n_{i}=1,2,3,4 . .
$$

Fitting to spectral line series data

$$
\mathrm{R}=1.09737 \times 10^{7} \mathrm{~m}^{-1}
$$

How does one explain this ?

The Rapidly Vanishing Atom: A Classical Disaster !

Not too hard to draw analogy with dynamics under another Central Force
Think of the Gravitational Force between two objects and their circular orbits.
Perhaps the electron rotates around the Nucleus and is bound by their electrical charge

$$
\mathrm{F}=\mathrm{G} \frac{\mathrm{M}_{1} \mathrm{M}_{2}}{\mathrm{r}^{2}} \Rightarrow \mathrm{k} \frac{Q_{1} Q_{2}}{\mathrm{r}^{2}}
$$

Laws of E\&M destroy this equivalent picture : Why ?

Allowed Energy Levels \& Orbit Radii in Bohr Model

$\mathrm{E}=\mathrm{KE}+\mathrm{U}=\frac{1}{2} m_{e} v^{2}-k \frac{e^{2}}{r}$

Force Equality for Stable Orbit

\Rightarrow Coulomb attraction $=$ CP Force

$$
\begin{array}{r}
k \frac{e^{2}}{r^{2}}=\frac{m_{e} v^{2}}{r} \\
\Rightarrow K E=\frac{m_{e} v^{2}}{2}=k \frac{e^{2}}{2 r}
\end{array}
$$

Total Energy $\mathrm{E}=\mathrm{KE}+\mathrm{U}=-k \frac{e^{2}}{2 r}$
Negative $\mathrm{E} \Rightarrow$ Bound system
This much energy must be added to the system to break up the bound atom

Radius of Electron Orbit :
$m v r=n \hbar$
$\Rightarrow v=\frac{n \hbar}{m r}$,
substitute in $\mathrm{KE}=\frac{1}{2} m_{e} v^{2}=\frac{k e^{2}}{2 r}$
$\Rightarrow r_{n}=\frac{n^{2} \hbar^{2}}{m k e^{2}}, n=1,2, \ldots \infty$
$n=1 \Rightarrow$ Bohr Radius a_{0}
$a_{0}=\frac{1^{2} \hbar^{2}}{m k e^{2}}=0.529 \times 10^{-10} \mathrm{~m}$
In general $r_{n}=n^{2} a_{0} ; n=1,2, \ldots \infty$
Quantized orbits of rotation

Energy Level Diagram and Atomic Transitions

$E_{n}=K+U=\frac{-k e^{2}}{2 r}$
since $r_{n}=a_{0} n^{2}, \mathrm{n}=$ quantum number
$E_{n}=\frac{-k e^{2}}{2 a_{0} n^{2}}=-\frac{13.6}{n^{2}} \mathrm{eV}, n=1,2,3 . . \infty$
Interstate transition: $\mathrm{n}_{\mathrm{i}} \rightarrow n_{f}$
$\Delta E=h f=E_{i}-E_{f}$
$=\frac{-k e^{2}}{2 a_{0}}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)$
$f=\frac{k e^{2}}{2 h a_{0}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$
$\frac{1}{\lambda}=\frac{f}{c}=\frac{k e^{2}}{2 h c a_{0}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$
$=\mathbf{R}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$

Bohr's Atom: Emission \& Absorption Spectra

Some Notes About Bohr Like Atoms

- Ground state of Hydrogen atom $(\mathrm{n}=1) \mathrm{E}_{0}=-13.6 \mathrm{eV}$
- Method for calculating energy levels etc applies to all Hydrogenlike atoms $\rightarrow-1 \mathrm{e}$ around +Ze
- Examples : $\mathrm{He}^{+}, \mathrm{Li}^{++}$
- Energy levels would be different if replace electron with Muons
- Bohr's method can be applied in general to all systems under a central force (e.g. gravitational instead of Coulombic)

If change $U(r)=k \frac{Q_{1} Q_{2}}{r} \rightarrow G \frac{M_{1} M_{2}}{r}$
Changes every thing: $\mathrm{E}, \mathrm{r}, \mathrm{f}$ etc
"Importance of constants in your life"

Bohr's Correspondence Principle

- It now appears that there are two different worlds with different laws of physics governing them
- The macroscopic world
- The microscopic world
- How does one transcend from one world to the other?
- Bohr's correspondence Principle
- predictions of quantum theory must correspond to predictions of the classical physics in the regime of sizes where classical physics is known to hold.
when $n \rightarrow \infty$ [Quantum Physics] = [Classical Physics]

