Physics 2D Lecture Slides Lecture 21: Feb 16th 2005

Vivek Sharma
UCSD Physics

Normalization Condition: Particle Must be Somewhere

Example: $\psi(x, 0)=C e^{\left|x_{0}\right|}, \quad \mathrm{C} \& \mathrm{x}_{0}$ are constants
This is a symmetric wavefunction with diminishing amplitude The Amplitude is maximum at $\mathrm{x}=0 \Rightarrow$ Probability is max too

Normalization Condition: How to figure out C ?
A real particle must be somewhere: Probability of finding
particle is finite $\mathrm{P}(-\infty \leq \mathrm{x} \leq+\infty)=\int_{-\infty}^{+\infty}|\psi(x, 0)|^{2} d x=\int_{-\infty}^{+\infty} C^{2} e^{-2\left|\frac{x}{x_{0}}\right|} d x=1$
$\Rightarrow 1=2 C^{2} \int_{0}^{\infty} e^{\left.-22 \frac{x}{x_{0}} \right\rvert\,} d x=2 C^{2}\left[\frac{x_{0}}{2}\right]=C^{2} x_{0}$

$$
\Rightarrow \psi(x, 0)=\frac{1}{\sqrt{x_{0}}} e^{-\left|\frac{x}{x_{0}}\right|}
$$

Where is the particle within a certain location $x \pm \Delta x$

$$
\begin{aligned}
& \mathrm{P}\left(-\mathrm{x}_{0} \leq \mathrm{x} \leq+\mathrm{x}_{0}\right)=\int_{-\mathrm{x}_{0}}^{+\mathrm{x}_{0}}|\psi(x, 0)|^{2} d x=\int_{-\mathrm{x}_{0}}^{+\mathrm{x}_{0}} C^{2} e^{-2\left|\frac{x}{x_{0}}\right|} d x \\
& =2 C^{2}\left[\frac{x_{0}}{2}\right]\left[1-e^{-2}\right]=\left[1-e^{-2}\right]=0.865 \Rightarrow 87 \%
\end{aligned}
$$

Where Do Wave Functions Come From ?

dependent Schrödinger Differential Equation (inspired by Wave Equation seen in 2C)
$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+U(x) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}$

Schrodinger had an interesting life

Schrodinger Wave Equation

Wavefunction ψ which is a sol. of the Sch. Equation embodies all modern physics experienced/learnt so far:
$\mathrm{E}=\mathrm{hf}, \quad \mathrm{p}=\frac{\mathrm{h}}{\lambda}, \quad \Delta x . \Delta p \sim \hbar, \Delta E . \Delta t \sim \hbar$, quantization etc

Schrodinger Equation is a Dynamical Equation much like Newton's Equation $\vec{F}=m \vec{a}$

$$
\psi(\mathrm{x}, 0) \rightarrow \overrightarrow{\text { Force }}(\text { potential }) \rightarrow \psi(\mathrm{x}, \mathrm{t})
$$

Evolves the System as a function of space-time The Schrodinger Eq. propogates the system forward \& backward in time:
$\psi(\mathrm{x}, \delta \mathrm{t})=\psi(\mathrm{x}, 0) \pm\left[\frac{d \psi}{d t}\right]_{t=0} \delta t$
Where does it come from ?? ..."First Principles"..no real derivation exists

Time Independent Sch. Equation

$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+U(x) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}$
Sometimes (depending on the character of the Potential $\mathrm{U}(\mathrm{x}, \mathrm{t})$) The Wave function is factorizable: can be broken up
$\Psi(\mathrm{x}, \mathrm{t})=\psi(x) \phi(t)$
Example: Plane Wave $\Psi(\mathrm{x}, \mathrm{t})=\mathrm{e}^{\mathrm{i}(\mathrm{kx}-\omega \mathrm{t})}=\mathrm{e}^{\mathrm{i}(\mathrm{kx})} \mathrm{e}^{-\mathrm{i}(\omega \mathrm{t})}$
In such cases, use seperation of variables to get :
$\frac{-\hbar^{2}}{2 m} \phi(t) \cdot \frac{\partial^{2} \psi(x)}{\partial^{2} x}+U(x) \psi(x) \phi(t)=i \hbar \psi(x) \frac{\partial \phi(t)}{\partial t}$
Divide Throughout by $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \phi(\mathrm{t})$
$\Rightarrow \frac{-\hbar^{2}}{2 m} \frac{1}{\psi(x)} \cdot \frac{\partial^{2} \psi(x)}{\partial^{2} x}+U(x)=i \hbar \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t}$
LHS is a function of x; RHS is fn of t
x and t are independent variables, hence :
\Rightarrow RHS $=$ LHS $=$ Constant $=\mathrm{E}$

Factorization Condition For Wave Function Leads to:

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+U(x) \psi(x)=E \psi(x)
$$

$$
i \hbar \frac{\partial \phi(t)}{\partial t}=E \phi(t)
$$

What is the Constant E ? How to Interpret it ?
Back to a Free particle :

$$
\begin{aligned}
& \Psi(\mathrm{x}, \mathrm{t})=A e^{i k x} e^{-\mathrm{i} \omega \mathrm{t}}, \psi(\mathrm{x})=A \mathrm{e}^{\mathrm{ikx}} \\
& \mathrm{U}(\mathrm{x}, \mathrm{t})=0
\end{aligned}
$$

Plug it into the Time Independent Schrodinger Equation (TISE) \Rightarrow
$\frac{-\hbar^{2}}{2 m} \frac{d^{2}\left(A e^{(i k x)}\right)}{d x^{2}}+0=E A e^{(i k x)} \Rightarrow E=\frac{\hbar^{2} k^{2}}{2 m}=\frac{p^{2}}{2 m}=$ (NR Energy)
Stationary states of the free particle: $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \mathrm{e}^{-\mathrm{i} \omega t}$
$\Rightarrow|\Psi(x, t)|^{2}=|\psi(x)|^{2}$
Probability is static in time t, character of wave function depends on $\psi(x)$

Schrodinger Eqn: Stationary State Form

- Recall \rightarrow when potential does not depend on time explicitly
- $\mathrm{U}(\mathrm{x}, \mathrm{t})=\mathrm{U}(\mathrm{x})$ only... we used separation of x, t variables to simplify
- $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \phi(\mathrm{t})$
- broke S. Eq. into two: one with x only and another with t only

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+U(x) \psi(x)=E \psi(x)
$$

$$
i \hbar \frac{\partial \phi(t)}{\partial t}=E \phi(t)
$$

$$
\Psi(x, t)=\psi(x) \phi(t)
$$

How to put Humpty-Dumpty back together ? e.g to say how to go from an expression of $\psi(\mathrm{x}) \rightarrow \Psi(\mathrm{x}, \mathrm{t})$ which describes time-evolution of the overall wave function

Schrodinger Eqn: Stationary State Form

Since $\frac{\mathrm{d}}{\mathrm{dt}}[\ln f(t)]=\frac{1}{f(t)} \frac{\mathrm{d} f(t)}{\mathrm{dt}}$
In $\mathrm{i} \hbar \frac{\partial \phi(t)}{\partial \mathrm{t}}=E \phi(t)$, rewrite as $\frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial \mathrm{t}}=\frac{E}{i \hbar}=-\frac{i E}{\hbar}$
and integrate both sides w.r.t. time
$\int_{t=0}^{t=t} \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial \mathrm{t}} d t=\int_{0}^{t}-\frac{i E}{\hbar} d t \Rightarrow \int_{0}^{t} \frac{1}{\phi(t)} \frac{\mathrm{d} \phi(t)}{\mathrm{dt}} d t=-\frac{i E}{\hbar}$
$\therefore \ln \phi(t)-\ln \phi(0)=-\frac{i E}{\hbar} t$, now exponentiate both sides
$\Rightarrow \phi(t)=\phi(0) e^{-\frac{i E}{\hbar} t} \quad ; \phi(0)=$ constant $=$ initial condition $=1($ e.g)
$\Rightarrow \phi(t)=e^{-\frac{i E_{t}}{\hbar} t} \quad \&$ Thus $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) e^{-\frac{i E}{\hbar} t}$ where $\mathrm{E}=$ energy of system

A More Interesting Potential : Particle In a Box			
$\mathrm{U}(\mathrm{x})$			Write the Form of Potential: Infinite Wall $\begin{aligned} & \mathrm{U}(\mathrm{x}, \mathrm{t})=\infty ; \mathrm{x} \leq 0, \mathrm{x} \geq \mathrm{L} \\ & \mathrm{U}(\mathrm{x}, \mathrm{t})=0 ; 0<\mathrm{X}<\mathrm{L} \end{aligned}$
			- Classical Picture: -Particle dances back and forth -Constant speed, const KE -Average <P> = 0 -No restriction on energy value $\text { - } \mathrm{E}=\mathrm{K}+\mathrm{U}=\mathrm{K}+0$ -Particle can not exist outside box -Can't get out because needs to borrow infinite energy to overcome potential of
0	$L X$		wall
			What happens when the joker is subatomic in size ??

Example of a Particle Inside a Box With Infinite Potential

$\Psi(x)$ for Particle Inside 1D Box with Infinite Potential Walls

Inside the box, no force $\Rightarrow \mathrm{U}=0$ or constant (same thing)
$\Rightarrow \quad \frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}+0 \psi(x)=E \psi(x)$
Why can't the particle exist
$\Rightarrow \frac{d^{2} \psi(x)}{d x^{2}}=-k^{2} \psi(x) ; k^{2}=\frac{2 m E}{\hbar^{2}}$
Outside the box ?
or $\frac{d^{2} \psi(x)}{d x^{2}}+k^{2} \psi(x)=0 \Leftarrow$ figure out what $\psi(\mathrm{x})$ solves this diff eq.
In General the solution is $\psi(x)=A \operatorname{sinkx}+B \operatorname{coskx}$ (A,B are constants)
Need to figure out values of A, B : How to do that ?
Apply BOUNDARY Conditions on the Physical Wavefunction
We said $\psi(x)$ must be continuous everywhere
So match the wavefunction just outside box to the wavefunction value just inside the box
\Rightarrow At $\mathrm{x}=0 \Rightarrow \psi(x=0)=0 \& \operatorname{At~} \mathrm{x}=\mathrm{L} \Rightarrow \psi(x=L)=0$
$\therefore \psi(x=0)=B=0$ (Continuity condition at $\mathrm{x}=0$)
$\& \psi(x=L)=0 \Rightarrow$ A Sin $\mathrm{kL}=0$ (Continuity condition at $\mathrm{x}=\mathrm{L}$)
\rightarrow E Conservation

$X=0 \quad X=L$

$$
\Rightarrow \mathrm{kL}=\mathrm{n} \pi \Rightarrow \mathrm{k}=\frac{\mathrm{n} \pi}{\mathrm{~L}}, n=1,2,3, \ldots \infty
$$

So what does this say about Energy E ? : $\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}$ Quantized (not Continuous)!

Quantized Energy levels of Particle in a Box

What About the Wave Function Normalization?

The particle's Energy and Wavefunction are determined by a number n We will call $n \rightarrow$ Quantum Number, just like in Bohr's Hydrogen atom What about the wave functions corresponding to each of these energy states?

ψ_{n}	$=A \sin (k x)=A \sin \left(\frac{n \pi x}{L}\right)$		for $0<\mathrm{x}<\mathrm{L}$
	$=0$		for $\mathrm{x} \geq 0, \mathrm{x} \geq \mathrm{L}$

Normalized Condition :
$1=\int_{0}^{\mathrm{L}} \psi_{\mathrm{n}}^{*} \psi_{\mathrm{n}} d x=A^{2} \int_{0}^{L} \operatorname{Sin}^{2}\left(\frac{n \pi x}{L}\right) \quad$ Use $2 \operatorname{Sin}^{2} \theta=1-2 \operatorname{Cos} 2 \theta$
$1=\frac{A^{2}}{2} \int_{0}^{L}\left(1-\cos \left(\frac{2 n \pi x}{L}\right)\right)$ and since $\int \cos \theta=\sin \theta$
$1=\frac{A^{2}}{2} L \Rightarrow A=\sqrt{\frac{2}{L}}$
So $\psi_{\mathrm{n}}=\sqrt{\frac{2}{L}} \sin (k x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad$...What does this look like?

Wave Functions: Shapes Depend on Quantum \# n

Where in The World is Carmen San Diego?

- We can only guess the probability of finding the particle somewhere in X
- For n=1 (ground state) particle most likely at $x=$ L/2
- For n=2 (first excited state) particle most likely at L/4, 3L/4
- Prob. Vanishes at $\mathrm{x}=\mathrm{L} / 2$ \& L
- How does the particle get from just before $\mathrm{x}=\mathrm{L} / 2$ to just after?
» QUIT thinking this way,
particles don't have trajectories
» Just probabilities of being

Classically, where is particle most likely to be ? Equal prob. of being anywhere inside the Box NOT SO says Quantum Mechanics!

Remember Sesame Street?

How to Calculate the QM prob of Finding Particle in Some region in Space
Consider $\mathrm{n}=1$ state of the particle
Ask : What is $\mathrm{P}\left(\frac{\mathrm{L}}{4} \leq x \leq \frac{3 L}{4}\right)$?
$\mathrm{P}=\int_{\frac{L}{4}}^{\frac{3 L}{4}}\left|\psi_{1}\right|^{2} d x=\frac{2}{L} \int_{\frac{L}{4}}^{\frac{3 L}{4}} \sin ^{2} \frac{\pi x}{L} d x=\left(\frac{2}{L}\right) \cdot \frac{1}{2} \int_{\frac{L}{4}}^{\frac{3 L}{4}}\left(1-\cos \frac{2 \pi x}{L}\right) d x$
$P=\frac{1}{L}\left[\frac{L}{2}-\right]\left[\frac{L}{2 \pi} \sin \frac{2 \pi x}{L}\right]_{L / 4}^{3 L / 4}=\frac{1}{2}-\frac{1}{2 \pi}\left(\sin \frac{2 \pi}{L} \cdot \frac{3 L}{4}-\sin \frac{2 \pi}{L} \cdot \frac{L}{4}\right)$
$P=\frac{1}{2}-\frac{1}{2 \pi}(-1-1)=0.818 \Rightarrow 81.8 \%$

Classically $\Rightarrow 50 \%$ (equal prob over half the box size)
\Rightarrow Substantial difference between Classical \& Quantum predictions

When The Classical \& Quantum Pictures Merge: $\mathrm{n} \rightarrow \infty$

But one issue is irreconcilable:
Quantum Mechanically the particle can not have $\mathrm{E}=0$
This is a consequence of the Uncertainty Principle
The particle moves around with KE inversely proportional to the Length Of the 1D Box

Finite Potential Barrier

- There are no Infinite Potentials in the real world
- Imagine the cost of as battery with infinite potential diff
- Will cost infinite \$ sum + not available at Radio Shack

Imagine a realistic potential : Large U compared to KE but not infinite

Classical Picture : A bound particle (no escape) in $0<x<L$
Quantum Mechanical Picture : Use $\Delta \mathrm{E} . \Delta \mathrm{t} \leq \mathrm{h} / 2 \pi$
Particle can leak out of the Box of finite potential $\mathrm{P}(|\mathrm{x}|>\mathrm{L}) \neq 0$

Finite Potential Well

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+U \psi(x)=E \psi(x) \\
& \Rightarrow \quad \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}(U-E) \psi(x) \\
&=\alpha^{2} \psi(x) ; \alpha=\sqrt{\frac{2 m(U-E)}{\hbar^{2}}}
\end{aligned}
$$

\Rightarrow General Solutions : $\psi(x)=A e^{+\alpha x}+B e^{-\alpha x}$
Require finiteness of $\psi(x)$
$\Rightarrow \psi(x)=A e^{+\alpha x} \ldots . . x<0 \quad$ (region I)
$\psi(x)=A e^{-\alpha x} \ldots . . \mathrm{x}>\mathrm{L} \quad$ (region III)
Again, coefficients A \& B come from matching conditions at the edge of the walls $(x=0, L)$
But note that wave fn at $\psi(x)$ at $(x=0, L) \neq 0!!$ (why?)
Further require Continuity of $\psi(x)$ and $\frac{d \psi(x)}{d x}$
These lead to rather different wave functions

Finite Potential Well: Particle can Burrow Outside Box

Finite Potential Well: Particle can Burrow Outside Box

Particle can be outside the box but only for a time $\Delta t \approx h / \Delta E$
$\Delta \mathrm{E}=$ Energy particle needs to borrow to
Get outside $\Delta \mathrm{E}=\mathrm{U}-\mathrm{E}+\mathrm{KE}$
The Cinderella act (of violating E Conservation cant last very long

Particle must hurry back (cant be caught with its hand inside the cookie-jar)
Penetration Length $\delta=\frac{1}{\alpha}=\frac{\hbar}{\sqrt{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}}$
If $\mathrm{U} \gg \mathrm{E} \Rightarrow$ Tiny penetration
If $\mathrm{U} \rightarrow \infty \Rightarrow \delta \rightarrow 0$

Finite Potential Well: Particle can Burrow Outside Box

If $U \gg E \Rightarrow$ Tiny penetration
If $\mathrm{U} \rightarrow \infty \Rightarrow \delta \rightarrow 0$
$\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 m(L+2 \delta)^{2}}, n=1,2,3,4 \ldots$
When $\mathrm{E}=\mathrm{U}$ then solutions blow up
\Rightarrow Limits to number of bound states $\left(\mathrm{E}_{\mathrm{n}}<U\right)$
When $\mathrm{E}>\mathrm{U}$, particle is not bound and can get either reflected or transmitted across the potential "barrier"

Simple Harmonic Oscillator: Quantum and Classical

Particle of mass m within a potential $\mathrm{U}(\mathrm{x})$ $\overrightarrow{\mathrm{F}}(\mathrm{x})=-\frac{d U(x)}{d x}$
$\left.\overrightarrow{\mathrm{~F}}(\mathrm{x}=\mathrm{a})=-\frac{d U(x)}{d x} \right\rvert\,=0$,
$\overrightarrow{\mathrm{F}}(\mathrm{x}=\mathrm{b})=0, \overrightarrow{\mathrm{~F}}(\mathrm{x}=\mathrm{c})=0 \ldots$...But... look at the Curvature:
$\partial^{2} U$
∂x^{2}
0 (stable), $\partial^{2} U$
< 0 (unstable)

Stable Equilibrium: General Form :
$\mathrm{U}(\mathrm{x})=\mathrm{U}(\mathrm{a})+\frac{1}{2} k(x-a)^{2}$
Rescale $\Rightarrow U(x)=\frac{1}{2} k(x-a)^{2}$
Motion of a Classical Oscillator (ideal)
Ball originally displaced from its equilibirium position, motion confined between $\mathrm{x}=0$ \& $\mathrm{x}=\mathrm{A}$
$\mathrm{U}(\mathrm{x})=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega^{2} x^{2} ; \omega=\sqrt{\frac{k}{m}}=$ Ang. Freq $E=\frac{1}{2} k A^{2} \Rightarrow$ Changing A changes E
E can take any value \& if $\mathrm{A} \rightarrow 0, \mathrm{E} \rightarrow 0$
Max. KE at $x=0, K E=0$ at $x= \pm A$

Quantum Picture: Harmonic Oscillator

Find the Ground state Wave Function $\psi(\mathrm{x})$
Find the Ground state Energy E when $\mathrm{U}(\mathrm{x})=\frac{1}{2} m \omega^{2} x^{2}$
Time Dependent Schrodinger Eqn: $\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x)$
$\Rightarrow \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}\left(E-\frac{1}{2} m \omega^{2} x^{2}\right) \psi(x)=0$ What $\psi(\mathrm{x})$ solves this?

Two guesses about the simplest Wavefunction:

1. $\psi(\mathrm{x})$ should be symmetric about $\mathrm{x} \quad$ 2. $\psi(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$
$+\psi(x)$ should be continuous $\& \frac{d \psi(x)}{d x}=$ continuous

My guess: $\psi(\mathrm{x})=\mathrm{C}_{0} \mathrm{e}^{-\alpha x^{2}} ;$ Need to find $\mathrm{C}_{0} \& \alpha$:

What does this wavefunction \& PDF look like?

Quantum Picture: Harmonic Oscillator

$$
\psi(\mathrm{x})=\mathrm{C}_{0} e^{-\alpha x^{2}}
$$

$$
\mathrm{P}(\mathrm{x})=\mathrm{C}_{0}^{2} e^{-2 \alpha x^{2}}
$$

How to Get $\mathrm{C}_{0} \& \alpha$?? ...Try plugging in the wave-function into the time-independent Schr. Eqn.

