

Physics 2D Lecture Slides Nov 26

Vivek Sharma UCSD Physics

Expectation Values \& Operators: More Formally

- Observable: Any particle property that can be measured
- X,P, KE, E or some combination of them, e,g: x^{2}
- How to calculate the probable value of these quantities for a QM state ?
- Operator: Associates an operator with each observable
- Using these Operators, one calculates the average value of that Observable
- The Operator acts on the Wavefunction (Operand) \& extracts info about the Observable in a straightforward way \rightarrow gets Expectation value for that observable

$$
\begin{aligned}
& \langle Q\rangle=\int_{-\infty}^{+\infty} \Psi^{*}(x, t)[\hat{Q}] \Psi^{*}(x, t) d x \\
& Q \text { is the observable, }[\hat{Q}] \text { is the operator } \\
& \&\langle Q>\text { is the Expectation value } \\
& \text { Examples: }[\mathrm{X}]=x, \\
& \qquad[\mathrm{~K}]=\frac{[\mathrm{P}]^{2}}{2 \mathrm{~m}}=\frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2}}{\partial x^{2}} \\
& {[\mathrm{E}]=\mathrm{i} \hbar \frac{\hbar}{\mathrm{i}} \frac{d}{d x}}
\end{aligned}
$$

Table 5.2 Common Observables and Associated Operators

Observable	Symbol	Associated Operator
position	x	x
momentum	p	$\frac{\hbar}{i} \frac{\partial}{\partial x}$
potential energy	U	$U(x)$
kinetic energy	K	$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$
hamiltonian	H	$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)$
total energy	E	$i \hbar \frac{\partial}{\partial t}$

Operators \rightarrow Information Extractors

[p] or $\hat{\mathrm{p}}=\frac{\hbar}{\mathrm{i}} \frac{d}{d x} \quad$ Momentum Operator gives the value of average mometum in the following way:
$<\mathrm{p}\rangle=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[p] \psi(x) d x=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})\left(\frac{\hbar}{\mathrm{i}}\right) \frac{d \psi}{d x} d x$
Similerly :
$[\mathrm{K}]$ or $\hat{\mathrm{K}}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2}}{d x^{2}}$ gives the value of average KE
$<\mathrm{K}>=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[K] \psi(x) d x=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})\left(-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}\right) d x$
Similerly
$<\mathrm{U}>=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[U(x)] \psi(x) d x \quad:$ plug in the $\mathrm{U}(\mathrm{x})$ fn for that case
and $\langle\mathrm{E}\rangle=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})[K+U(x)] \psi(x) d x=\int_{-\infty}^{+\infty} \psi^{*}(\mathrm{x})\left(-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}+U(x)\right) d x$
Hamiltonian Operator [H] = [K] +[U]
The Energy Operator $[\mathrm{E}]=\mathrm{i} \hbar \frac{\partial}{\partial t}$ informs you of the average energy

$[\mathrm{H}] \&[\mathrm{E}]$ Operators

- [H] is a function of x
- [E] is a function of t.......they are really different operators
- But they produce identical results when applied to any solution of the time-dependent Schrodinger Eq.
- $\quad[\mathrm{H}] \Psi(\mathrm{x}, \mathrm{t})=[\mathrm{E}] \Psi(\mathrm{x}, \mathrm{t})$

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x, t)\right] \Psi(x, t)=\left[i \hbar \frac{\partial}{\partial t}\right] \Psi(x, t)
$$

- Think of S. Eq as an expression for Energy conservation for a Quantum system

Where do Operators come from ? A touchy-feely answer

Example:[p] The momentum Extractor (operator):
Consider as an example: Free Particle Wavefunction
$\Psi(\mathrm{x}, \mathrm{t})=\mathrm{Ae}^{\mathrm{i}(\mathrm{kx}-\mathrm{wt})} ; \mathrm{k}=\frac{2 \pi}{\lambda}, \lambda=\frac{h}{p} \Rightarrow k=\frac{p}{\hbar}$
rewrite $\Psi(\mathrm{x}, \mathrm{t})=\mathrm{Ae}^{\mathrm{i}\left(\frac{p}{\hbar} \mathrm{x}-\mathrm{wt}\right)} ; \frac{\partial \Psi(\mathrm{x}, \mathrm{t})}{\partial x}=i \frac{p}{\hbar} \mathrm{Ae}^{\mathrm{i} \mathrm{p}^{\left.\frac{p}{\hbar}-\mathrm{wt}\right)}}=i \frac{p}{\hbar} \Psi(\mathrm{x}, \mathrm{t})$
$\Rightarrow\left[\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x}\right] \Psi(\mathrm{x}, \mathrm{t})=\mathrm{p} \Psi(\mathrm{x}, \mathrm{t})$

So it is not unreasonable to associate $[\mathrm{p}]=\left[\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x}\right]$ with observable p

Example : Average Momentum of particle in box

- Given the symmetry of the 1D box, we argued last time that <p> = 0
: now some inglorious math to prove it !
- Be lazy, when you can get away with a symmetry argument to solve a problem..do it \& avoid the evil integration \& algebra......but be sure!

$$
\begin{aligned}
& \psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right) \quad \& \quad \psi_{n}^{*}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right) \\
& \langle p\rangle=\int_{-\infty}^{+\infty} \psi^{*}[p] \psi d x=\int_{-\infty}^{\infty} \psi^{*}\left[\frac{\hbar}{i} \frac{d}{d x} \psi^{*} d x\right. \\
& \langle p\rangle=\frac{\hbar}{i} \frac{2}{L} \frac{n \pi}{L} \int_{-\infty}^{\infty} \sin \left(\frac{n \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) d x
\end{aligned}
$$

Since $\int \sin$ ax cosax $d x=\frac{1}{2 \mathrm{a}} \sin ^{2} a x$...here $\mathrm{a}=\frac{\mathrm{n} \pi}{\mathrm{L}}$
$\Rightarrow\langle p\rangle=\frac{\hbar}{i L}\left[\sin ^{2}\left(\frac{n \pi}{L} x\right]_{x=0}^{x=L}=0\right.$ since $\operatorname{Sin}^{2}(0)=\operatorname{Sin}^{2}(n \pi)=0$
We knew THAT before doing any math !

Quiz 1: What is the <p> for the Quantum Oscillator in its symmetric ground state Quiz 2: What is the < $\mathrm{p}>$ for the Quantum Oscillator in its asymmetric first excited state

But what about the <KE> of the Particle in Box?

$\langle p\rangle=0$ so what about expectation value of $K=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}$?
$\langle K\rangle=0$ because $\langle p\rangle=0$; clearly not, since we showed $\mathrm{E}=\mathrm{KE} \neq 0$ Why ? What gives?
Because $\mathrm{p}_{\mathrm{n}}= \pm \sqrt{2 m E_{n}}= \pm \frac{n \pi \hbar}{L} ; \quad$ " \pm " is the key!
AVERAGE $\mathrm{p}=0$, particle is moving back \& forth
$<$ KE $\rangle=\left\langle\frac{p^{2}}{2 m}\right\rangle \neq 0$ not $\frac{\left\langle p^{2}\right\rangle}{2 m}$!

Be careful when being "lazy"

Quiz: what about <KE> of a quantum Oscillator?
Does similar logic apply??

Schrodinger Eqn: Stationary State Form

- Recall \rightarrow when potential does not depend on time explicitly $\mathrm{U}(\mathrm{x}, \mathrm{t})$ $=\mathrm{U}(\mathrm{x})$ only...we used separation of x, t variables to simplify $\Psi(\mathrm{x}, \mathrm{t})=$ $\psi(x) \phi(t) \&$ broke S. Eq. into two: one with x only and another with t only

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+U(x) \psi(x)=E \psi(x)
$$

$$
\Psi(x, t)=\psi(x) \phi(t)
$$

$$
i \hbar \frac{\partial \phi(t)}{\partial t}=E \phi(t)
$$

How to put Humpty-Dumpty back together ? e.g to say how to go from an expression of $\psi(x) \rightarrow \Psi(x, t)$ which describes time-evolution of the overall wave function

Schrodinger Eqn: Stationary State Form

Since $\frac{\mathrm{d}}{\mathrm{dt}}[\ln f(t)]=\frac{1}{f(t)} \frac{\mathrm{d} f(t)}{\mathrm{dt}}$
In $\mathrm{i} \hbar \frac{\partial \phi(t)}{\partial \mathrm{t}}=E \phi(t)$, rewrite as $\frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial \mathrm{t}}=\frac{E}{i \hbar}=-\frac{i E}{\hbar}$
and integrate both sides w.r.t. time
$\int_{t=0}^{t=t} \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial \mathrm{t}} d t=\int_{0}^{t}-\frac{i E}{\hbar} d t \Rightarrow \int_{0}^{t} \frac{1}{\phi(t)} \frac{\mathrm{d} \phi(t)}{\mathrm{dt}} d t=-\frac{i E}{\hbar}$
$\therefore \ln \phi(t)-\ln \phi(0)=-\frac{i E}{\hbar} t$, now exponentiate both sides
$\Rightarrow \phi(t)=\phi(0) e^{-\frac{i E}{\hbar} t} \quad ; \phi(0)=$ constant $=$ initial condition $=1(\mathrm{e} . \mathrm{g})$
$\Rightarrow \phi(t)=e^{-\frac{i E_{t}}{\hbar} t}$ \& Thus $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) e^{-\frac{i E_{t}}{\hbar} t}$ where $\mathrm{E}=$ energy of system

Schrodinger Eqn: Stationary State Form

$P(x, t)=\Psi^{*} \Psi=\psi^{*}(x) e^{+\frac{i E_{t} t}{\hbar} t} \psi(x) e^{-\frac{i E_{t}}{\hbar} t}=\psi^{*}(x) \psi(x) e^{\frac{i E}{} \frac{i E-\frac{E}{\hbar} t}{\hbar}}=|\psi(x)|^{2}$
In such cases, $P(x, t)$ is INDEPENDENT of time.
These are called "stationary" states because Prob is independent of time

Examples : Particle in a box (why?)

: Quantum Oscillator (why?)
Total energy of the system depends on the spatial orientation of the system : charteristic of the potential situation !

The Case of a Rusty "Twisted Pair" of Naked Wires \& How Quantum Mechanics Saved ECE Majors !

- Twisted pair of Cu Wire (metal) in virgin form
- Does not stay that way for long in the atmosphere -Gets oxidized in dry air quickly $\mathrm{Cu} \rightarrow \mathrm{Cu}_{2} \mathrm{O}$ \cdot In wet air $\mathrm{Cu} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}$ (the green stuff on wires)
- Oxides or Hydride are non-conducting ..so no current can flow across the junction between two metal wires
- No current means no circuits \rightarrow no EE, no ECE !!
- All ECE majors must now switch to Chemistry instead \& play with benzene !!! Bad news !

Potential Barrier

	Description of Potential	
$\mathrm{U}=0$	$\mathrm{x}<0$	(Region I)
$\mathrm{U}=\mathrm{U}$	$0<\mathrm{x}<\mathrm{L}$	(Region II)
$\mathrm{U}=0$	$\mathrm{x}>\mathrm{L}$	(Region III)

Consider George as a "free Particle/Wave" with Energy E incident from Left Free particle are under no Force; have wavefunctions like

$$
\Psi=\mathrm{A} \mathrm{e}^{\mathrm{i}(\mathrm{kx}-\mathrm{wt})} \text { or } \mathrm{B} \mathrm{e}^{\mathrm{i}(-\mathrm{kx}-\mathrm{wt})}
$$

Tunneling Through A Potential Barrier

Region I

Region III Prob ?
-Classical \& Quantum Pictures compared: When $\mathrm{E}>\mathrm{U}$ \& when $\mathrm{E}<\mathrm{U}$ -Classically , an particle or a beam of particles incident from left encounters barrier:
-when $\mathrm{E}>\mathrm{U} \rightarrow$ Particle just goes over the barrier (gets transmitted)
-When $\mathrm{E}<\mathrm{U} \rightarrow$ particle is stuck in region I, gets entirely reflected, no transmission (T)
-What happens in a Quantum Mechanical barrier ? No region is inaccessible for particle since the potential is (sometimes small) but finite

Beam Of Particles With E < U Incident On Barrier From Left

Region I

Description Of WaveFunctions in Various regions: Simple Ones first
In Region I: $\Psi_{\mathrm{I}}(x, t)=A e^{i(k x-\omega t)}+B e^{i(-k x-\omega t)}=$ incident + reflected Waves

$$
\text { with } \mathrm{E}=\hbar \omega=\frac{\hbar^{2} k^{2}}{2 m}
$$

define Reflection Coefficient : $\mathrm{R}=\frac{|\mathrm{B}|^{2}}{|\mathrm{~A}|^{2}}$ = frac of incident wave intensity reflected back
In Region III: $\Psi_{\text {III }}(x, t)=F e^{i(k x-\omega t)}+G e^{i(-k x-\omega t)}=$ transmitted
Note : $G e^{i(-k x-\omega t)}$ corresponds to wave incident from right !
This piece does not exist in the scattering picture we are thinking of now ($\mathrm{G}=0$)
So $\Psi_{\text {III }}(x, t)=F e^{i(k x-\omega t)}$ represents transmitted beam. Define $\mathrm{T}=\frac{|\mathrm{F}|^{2}}{|\mathrm{~A}|^{2}}$
Unitarity Condition $\Rightarrow \mathrm{R}+\mathrm{T}=1$ (particle is either reflected or transmitted)

Wave Function Across The Potential Barrier

In Region II of Potential U
TISE: $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+U \psi(x)=E \psi(x)$
$\Rightarrow \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}(U-E) \psi(x)$

$$
=\alpha^{2} \psi(x)
$$

with $\alpha^{2}=\frac{\sqrt{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}}{\hbar} ; \quad \mathrm{U}>\mathrm{E} \Rightarrow \alpha^{2}>0$
Solutions are of form $\psi(x) \propto e^{ \pm \alpha x}$
$\Psi_{I I}(x, t)=C e^{+\alpha x-i \omega t}+D e^{-\alpha x-i \omega t} \quad 0<\mathrm{x}<\mathrm{L}$
To determine C \& D \Rightarrow apply matching cond.
$\Psi_{I I}(x, t)=$ continuous across barrier $(\mathrm{x}=0, \mathrm{~L})$

$\frac{d \Psi_{I I}(x, t)}{d x}=$ continuous across barrier $(\mathrm{x}=0, \mathrm{~L})$

Continuity Conditions Across Barrier

At $\mathrm{x}=0$, continuity of $\psi(\mathrm{x}) \Rightarrow$

$$
\begin{equation*}
A+B=C+D \tag{1}
\end{equation*}
$$

At $\mathrm{x}=0$, continuity of $\frac{d \psi(\mathrm{x})}{d x} \Rightarrow$

$$
\begin{equation*}
i k A-i k B=\alpha C-\alpha D \tag{2}
\end{equation*}
$$

Similarly at $\mathrm{x}=\mathrm{L}$ continuity of $\psi(\mathrm{x}) \Rightarrow$

$$
\begin{equation*}
C e^{-\alpha L}+D e^{+\alpha L}=F e^{i k L} \tag{3}
\end{equation*}
$$

at $\mathrm{x}=\mathrm{L}$, continuity of $\frac{d \psi(\mathrm{x})}{d x} \Rightarrow$

$$
\begin{equation*}
-(\alpha \mathrm{C}) e^{-\alpha L}+(\alpha \mathrm{D}) e^{\alpha L}=i k F e^{i k L} \tag{4}
\end{equation*}
$$

Four equations \& four unknowns
Cant determine A,B,C,D but if you
Divide thruout by A in all 4 equations :

\Rightarrow ratio of amplitudes \rightarrow relations for $\mathrm{R} \& \mathrm{~T}$ That's what we need any way

Potential Barrier when $\mathrm{E}<\mathrm{U}$

Expression for Transmission Coeff T=T(E):
Depends on barrier Height U, barrier Width L and particle Energy E

$$
\mathrm{T}(\mathrm{E})=\left[1+\frac{1}{4}\left(\frac{U^{2}}{E(U-E)}\right) \sinh ^{2}(\alpha L)\right]^{-1} ; \quad \alpha=\frac{\sqrt{2 m(U-E)}}{\hbar}
$$

and
$R(E)=1-T(E)$
.what's not transmitted is reflected

Above equation holds only for $\mathrm{E}<\mathrm{U}$
For $\mathrm{E}>\mathrm{U}, \alpha=$ imaginary\#
Sinh $(\alpha \mathrm{L})$ becomes oscillatory
This leads to an Oscillatory T(E) and
Transmission resonances occur where For some specific energy ONLY, T(E) =1 At other values of E , some particles are reflected back ..even though E>U !!

That's the Wave nature of the Quantum particle

Ceparated in Coppertino

Solved Example 6.1 (...that I made such a big deal about yesterday) $\mathrm{Q}: 2 \mathrm{Cu}$ wires are seperated by insulating Oxide layer. Modeling the Oxide layer as a square barrier of height $\mathrm{U}=10.0 \mathrm{eV}$, estimate the transmission coeff for an incident beam of electrons of $\mathrm{E}=7.0 \mathrm{eV}$ when the layer thickness is
(a) 5.0 nm (b) 1.0 nm

Q: If a 1.0 mA current in one of the intwined wires is incident on Oxide layer, how much of this current passes thru the Oxide layer on to the adjacent wire if the layer thickness is 1.0 nm ? What becomes of the remaining current?

$$
\mathrm{T}(\mathrm{E})=\left[1+\frac{1}{4}\left(\frac{U^{2}}{E(U-E)}\right) \sinh ^{2}(\alpha L)\right]^{-1} \alpha=\frac{\sqrt{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}}{\hbar}, k=\frac{\sqrt{2 \mathrm{mE}}}{\hbar}
$$

$$
\mathrm{T}(\mathrm{E})=\left[1+\frac{1}{4}\left(\frac{U^{2}}{E(U-E)}\right) \sinh ^{2}(\alpha L)\right]^{-1}
$$

Use $\hbar=1.973 \mathrm{keV} . \dot{\mathrm{A}} / \mathrm{c}, \mathrm{m}_{\mathrm{e}}=511 \mathrm{keV} / \mathrm{c}^{2}$

$$
\Rightarrow \alpha=\frac{\sqrt{2 m_{e}(U-E)}}{\hbar}=\frac{\sqrt{2 \times 511 \mathrm{kev} / \mathrm{c}^{2}\left(3.0 \times 10^{-3} \mathrm{keV}\right)}}{1.973 \mathrm{keV} \cdot \dot{\mathrm{~A}} / \mathrm{c}}=0.8875 \dot{\mathrm{~A}}^{-1}
$$

Substitute in expression for $\mathrm{T}=\mathrm{T}(\mathrm{E})$
$\mathrm{T}=\left[1+\frac{1}{4}\left(\frac{10^{2}}{7(10-7)}\right) \sinh ^{2}\left(0.8875 \dot{\mathrm{~A}}^{-1}\right)(50 \dot{\mathrm{~A}})\right]^{-1}=0.963 \times 10^{-38}($ small $)!!$
However, for $\mathrm{L}=10 \dot{\mathrm{~A}}$; $\mathrm{T}=0.657 \times 10^{-7}$
Reducing barrier width by $\times 5$ leads to Trans. Coeff enhancement by 31 orders of magnitude !!!

1 mA current $=\mathrm{I}=\frac{\mathrm{Q}=\mathrm{Nq}_{\mathrm{e}}}{\mathrm{t}} \Rightarrow N=6.25 \times 10^{15}$ electrons
$\mathrm{N}_{\mathrm{T}}=\#$ of electrons that escape to the adjacent wire (past oxide layer)
$\mathrm{N}_{\mathrm{T}}=N . T=\left(6.25 \times 10^{15}\right.$ electrons $) \times \mathrm{T}$;
For $\mathrm{L}=10 \dot{\mathrm{~A}}, \mathrm{~T}=0.657 \times 10^{-7} \Rightarrow \mathrm{~N}_{\mathrm{T}}=4.11 \times 10 \Rightarrow I_{T}=65.7 \mathrm{pA}!!$

Oxide thickness makes all the difference !
That's why from time-to-time one needs to Scrape off the green stuff off the naked wires

Current Measured on the first wire is sum of incident+reflected currents and current measured on "adjacent" wire is the I_{T}

QM in 3 Dimensions

- Learn to extend S. Eq and its solutions from "toy" examples in 1-Dimension (x) \rightarrow three orthogonal dimensions
($\mathrm{r} \equiv \mathrm{x}, \mathrm{y}, \mathrm{z}$)

$$
\vec{r}=\hat{i} x+\hat{j} y+\hat{k} z
$$

- Then transform the systems
- Particle in 1D rigid box \rightarrow 3D rigid box
- 1D Harmonic Oscillator \rightarrow 3D Harmonic Oscillator
- Keep an eye on the number of different integers needed to specify system $1 \rightarrow 3$ (corresponding to 3 available degrees of freedom $\mathrm{x}, \mathrm{y}, \mathrm{z}$)

Quantum Mechanics In 3D: Particle in 3D Box

The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates
Time Dependent Schrodinger Eqn:

$$
\begin{gather*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(x, y, z, t)+U(x, y, z) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, y, z, t)}{\partial t} \ldots . . I \\
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
\text { So }-\frac{\hbar^{2}}{2 m} \nabla^{2}=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial y^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial z^{2}}\right)=[K] \\
=\left[K_{x}\right]+\left[K_{x}\right]+\left[K_{x}\right]
\end{gather*}
$$

so $[H] \Psi(x, t)=[E] \Psi(x, t)$ is still the Energy Conservation Eq

Stationary states are those for which all probabilities are constant in time and are given by the solution of the TDSE in seperable form:

$$
\Psi(x, y, z, t)=\Psi(\vec{r}, t)=\psi(\vec{r}) \mathrm{e}^{-i \omega t}
$$

This statement is simply an extension of what we derived in case of 1 D time-independent potential

Particle in 3D Rigid Box : Separation of Orthogonal Spatial (x, y, z) Variables

TISE in 3D: $-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2} \psi(x, y, z)+U(x, y, z) \psi(x, y, z)=E \psi(x, y, z)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ independent of each other, write $\psi(x, y, z)=\psi_{1}(x) \psi_{2}(y) \psi_{3}(z)$
and substitute in the master TISE, after dividing thruout by $\psi=\psi_{1}(x) \psi_{2}(y) \psi_{3}(z)$
and noting that $\mathrm{U}(\mathrm{r})=0$ for $(0<x, y, z,<L) \Rightarrow$
$\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{1}(x)} \frac{\partial^{2} \psi_{1}(x)}{\partial x^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{2}(y)} \frac{\partial^{2} \psi_{2}(y)}{\partial y^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{3}(z)} \frac{\partial^{2} \psi_{3}(z)}{\partial z^{2}}\right)=E=$ Const
This can only be true if each term is constant for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \Rightarrow$

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{1}(x)}{\partial x^{2}}=E_{1} \psi_{1}(x) ;-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{2}(y)}{\partial y^{2}}=E_{2} \psi_{2}(y) ;-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{3}(z)}{\partial z^{2}}=E_{3} \psi_{3}(z)
$$

With $\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}=\mathrm{E}=$ Constant
(Total Energy of 3D system)
Each term looks like particle in 1D box (just a different dimension)
So wavefunctions must be like $\psi_{1}(x) \propto \sin k_{1} x, \psi_{2}(y) \propto \sin k_{2} y, \psi_{3}(z) \propto \sin k_{3} z$

Particle in 3D Rigid Box : Separation of Orthogonal Variables

Wavefunctions are like $\psi_{1}(x) \propto \sin k_{1} X,, \psi_{2}(y) \propto \sin k_{2} y,, \psi_{3}(z) \propto \sin k_{3} z$
Continuity Conditions for ψ_{i} and its first spatial derivatives $\Rightarrow n_{i} \pi=k_{i} L$
Leads to usual Quantization of Linear Momentum $\overrightarrow{\mathrm{p}}=\hbar \overrightarrow{\mathrm{k}}$.....in 3D

$$
p_{x}=\left(\frac{\pi \hbar}{L}\right) n_{1} ; p_{y}=\left(\frac{\pi \hbar}{L}\right) n_{2} ; p_{z}=\left(\frac{\pi \hbar}{L}\right) n_{3}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}=1,2,3, \ldots \infty\right)
$$

Note: by usual Uncertainty Principle argument neither of $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}=0$! (why?)
Particle Energy $\mathrm{E}=\mathrm{K}+\mathrm{U}=\mathrm{K}+0=\frac{1}{2 \mathrm{~m}}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)$
Energy is again quantized and brought to you by integers $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$ (independent) and $\psi(\mathrm{r})=\mathrm{A} \sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z \quad$ (A = Overall Normalization Constant) $\Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\psi(\mathrm{r}) \mathrm{e}^{-\mathrm{E} \frac{\mathrm{E}}{} \mathrm{E}^{\prime}}=A\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{-\mathrm{i} \mathrm{E}^{\hbar} t}$

Particle in 3D Box :Wave function Normalization Condition

$\Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\psi(\mathrm{r}) \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{\hbar} t}=A\left[\sin k_{1} \mathrm{X} \sin k_{2} \mathrm{y} \sin k_{3} \mathrm{z}\right] \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{} \mathrm{E}_{t}}$
$\Psi^{*}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\psi^{*}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{\mathrm{i} \frac{\mathrm{E}}{\hbar}}=A\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{\mathrm{i} \frac{\mathrm{E}_{t}}{\hbar}}$
$\Psi^{*}(\vec{r}, \mathrm{t}) \Psi(\mathrm{r}, \mathrm{t})=A^{2}\left[\sin ^{2} k_{1} \mathrm{x} \sin ^{2} k_{2} \mathrm{y} \sin ^{2} k_{3} \mathrm{z}\right]$
Normalization Condition : $1=\iiint \mathrm{P}(\mathrm{r}) \mathrm{dx} \mathrm{dydz} \Rightarrow$
$1=A^{2} \int_{x=0}^{\mathrm{L}} \sin ^{2} k_{1} \mathrm{x} d \mathrm{x} \int_{\mathrm{y}=0}^{\mathrm{L}} \sin ^{2} k_{2} \mathrm{y} d y \int_{z=0}^{\mathrm{L}} \sin ^{2} k_{3} \mathrm{z} d z=A^{2}\left(\sqrt{\frac{L}{2}}\right)\left(\sqrt{\frac{L}{2}}\right)\left(\sqrt{\frac{L}{2}}\right)$
$\Rightarrow A=\left[\frac{2}{L}\right]^{\frac{3}{2}}$ and $\Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\left[\frac{2}{L}\right]^{\frac{3}{2}}\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} \mathrm{z}\right] \mathrm{e}^{-\frac{\mathrm{E}}{} \mathrm{E} t}$

Particle in 3D Box : Energy Spectrum \& Degeneracy

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right) ; \mathrm{n}_{\mathrm{i}}=1,2,3 \ldots \infty, n_{i} \neq 0 \\
& \text { Ground State Energy } \mathrm{E}_{111}=\frac{3 \pi^{2} \hbar^{2}}{2 m L^{2}} \\
& \text { Next level } \Rightarrow 3 \text { Excited states } \mathrm{E}_{211}=\mathrm{E}_{121}=\mathrm{E}_{112}=\frac{6 \pi^{2} \hbar^{2}}{2 m L^{2}} \\
& \text { Different configurations of } \psi(\mathrm{r})=\psi(\mathrm{x}, \mathrm{y}, \mathrm{z}) \text { have same energy } \Rightarrow \text { degeneracy }
\end{aligned}
$$

	n^{2}	Degeneracy
$4 E_{0}$	12	None
$\frac{11}{3} E_{0}$	11	3
$3 E_{0}$		
	9	3
$2 E_{0}$	6	3
E_{0}	3	None

Degenerate States

Ground State

E_{111}

$$
\mathrm{E}_{211}=\mathrm{E}_{121}=\mathrm{E}_{112}=\frac{6 \pi^{2} \hbar^{2}}{2 m L^{2}}
$$

Probability Density Functions for Particle in 3D Box

Same Energy \rightarrow Degenerate States
Cant tell by measuring energy if particle is in 211, 121, 112 quantum State

Source of Degeneracy: How to "Lift" Degeneracy

- Degeneracy came from the threefold symmetry of a CUBICAL Box ($\mathrm{L}_{\mathrm{x}}=\mathrm{L}_{\mathrm{y}}=\mathrm{L}_{\mathrm{z}}=\mathrm{L}$)
- To Lift (remove) degeneracy \rightarrow change each dimension such that CUBICAL box \rightarrow Rectangular Box
- $\left(\mathrm{L}_{\mathrm{x}} \neq \mathrm{L}_{\mathrm{y}} \neq \mathrm{L}_{\mathrm{z}}\right)$
- Then

$$
E=\left(\frac{n_{1}^{2} \pi^{2}}{2 m L_{x}^{2}}\right)+\left(\frac{n_{2}^{2} \pi^{2}}{2 m L_{y}^{2}}\right)+\left(\frac{n_{3}^{2} \pi^{2}}{2 m L_{z}^{2}}\right)
$$

$$
L_{1}<L_{2}<L_{3}
$$

- E_{121}
E_{112}

