

Physics 2D Lecture Slides Dec 3 : The End!

Vivek Sharma UCSD Physics

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \Phi}{d \phi^{2}}+\mathrm{m}_{l}^{2} \Phi=0 \ldots \ldots \ldots \ldots \ldots . .(1) \\
& \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[l(l+1)-\frac{\mathrm{m}_{l}^{2}}{\sin ^{2} \theta}\right] \Theta(\theta)=0 \ldots . .(2) \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\left[\frac{2 m r^{2}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)-\frac{l(l+1)}{r^{2}}\right] R(r)=0 \ldots .(3)
\end{aligned}
$$

These 3 "simple" diff. eqn describe the physics of the Hydrogen atom. All we had to do was figure out (with help of French mathematicians) the solutions of the diff. equations

Each part, clearly, has a different functional form and gave clues to behaviour of the Hygrogen atom in its Ground state and excited states

Solutions of The S. Eq for Hydrogen Atom

In Summary : The hydrogen atom is brought to you by the letters

$$
\begin{aligned}
& \mathrm{n}=1,2,3,4,5, \ldots \infty \\
& l=0,1,2,3,4 \ldots . .(n-1) \\
& \mathrm{m}_{l}=0, \pm 1, \pm 2, \pm 3, \ldots \pm l
\end{aligned} \text { Quantum \# appear only in Trapped systems }
$$

The Spatial Wave Function of the Hydrogen Atom
$\Psi(r, \theta, \phi)=R_{n_{l}}(r) \cdot \Theta_{l m_{l}}(\theta) . \Phi_{\mathrm{m}_{1}}(\phi)$
$=R_{n l} \mathrm{Y}_{l}^{m_{l}}$ (Spherical Harmonics)

NOW we are going to take the Hydrogen atom and " Kick it up a Notch !"

Interpreting Orbital Quantum Number (I)

Radial part of S.Eqn: $\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left[\frac{2 m r^{2}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}}{\mathrm{r}}\right)-\frac{l(l+1)}{r^{2}}\right] R(r)=0$
For H Atom: $\mathrm{E}=\mathrm{K}+\mathrm{U}=\mathrm{K}_{\text {RADIAL }}+\mathrm{K}_{\text {ORBITAL }}-\frac{k e^{2}}{r}$; substitute this form for E
$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 \mathrm{~m}}{\hbar^{2}}\left[\mathrm{~K}_{\text {RADIAL }}+\mathrm{K}_{\text {ORBITAL }}-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{l(l+1)}{r^{2}}\right] R(r)=0$
Examine the equation, if we set $K_{\text {ORBitaL }}=\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}$ then get a diff. eq. in r

$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 \mathrm{~m}}{\hbar^{2}}\left[\mathrm{~K}_{\text {RADIAL }}\right] R(r)=0$ which depends only on radius r of orbit
Further, we also know that $\mathrm{K}_{\text {oRBITAL }}=\frac{1}{2} m v_{\text {orbit }}^{2} ; \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}} ;|\mathrm{L}|=\mathrm{mv}_{\text {orb }} \mathrm{r} \Rightarrow \mathrm{K}_{\text {ORBITAL }}=\frac{L^{2}}{2 m r^{2}}$
Putting it all togather: $\mathrm{K}_{\text {oRBITAL }}=\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}=\frac{L^{2}}{2 m r^{2}} \Rightarrow$ magnitude of Ang. Mom $|L|=\sqrt{l(l+1)} \hbar$
Since $l=$ positive integer $=0,1,2,3 \ldots(\mathrm{n}-1) \Rightarrow$ angular momentum $|L|=\sqrt{l(l+1)} \hbar=$ discrete values

$$
|L|=\sqrt{l(l+1)} \hbar: \quad \text { QUANTIZATION OF Electron's Angular Momentum }
$$

Magnetic Quantum Number m|

$$
\vec{L}=\vec{r} \times \vec{p} \text { (Right Hand Rule) }
$$

In Hydrogen atom, $\overrightarrow{\mathrm{L}}$ can not have precise measurable value
Uncertainty Principle \& Angular Momentum : $\Delta \mathrm{L}_{z} \Delta \phi \sim \hbar$
Arbitararily picking Z axis as a reference direction:
$\overrightarrow{\mathrm{L}}$ vector spins around Z axis (precesses).
The Z component of $\overrightarrow{\mathrm{L}}$
$\left|\mathrm{L}_{\mathrm{z}}\right|=m_{l} \hbar ; \quad m_{l}= \pm 1, \pm 2, \pm 3 \ldots \pm 1$
L

Note: $\left|\mathrm{L}_{\mathrm{Z}}\right|<|L| \quad$ (always)
since $m_{l} \hbar<\sqrt{l(l+1) \hbar}$
It can never be that $\left|\mathrm{L}_{\mathrm{z}}\right|=m_{l} \hbar=\sqrt{l(l+1) \hbar}$ (breaks Uncertainty Principle)
So you see, the dance has begun !

Dancing in the Dark!

Radial Probability Densities

$\Psi(r, \theta, \phi)=R_{n l}(r) . \Theta_{l m_{l}}(\theta) . \Phi_{\mathrm{m}_{l}}(\phi)=R_{n l} \mathrm{Y}_{l}^{m_{l}}$
Probability Density Function in 3D:

$$
\mathrm{P}(\mathrm{r}, \theta, \phi)=\Psi^{*} \Psi=|\Psi(r, \theta, \phi)|^{2}=\left|R_{n l}\right|^{2} \cdot\left|\mathrm{Y}_{l}^{m_{l}}\right|^{2}
$$

Note : 3D Volume element $\mathrm{dV}=\mathrm{r}^{2} \cdot \sin \theta \cdot d r . d \theta \cdot d \phi$
Prob. of finding particle in a tiny volume dV is
P.dV $=\left|R_{n l}\right|^{2} .\left|\mathrm{Y}_{l}^{m_{l}}\right|^{2} . \mathrm{r}^{2} \cdot \sin \theta \cdot d r . d \theta \cdot d \phi$

The Radial part of Prob. distribution: $\mathrm{P}(\mathrm{r}) \mathrm{dr}$
$\mathrm{P}(\mathrm{r}) \mathrm{dr}=\left|R_{n l}\right|^{2} \cdot r^{2} d r \int_{0}^{\pi}\left|\Theta_{l m_{l}}(\theta)\right|^{2} d \theta \int_{0}^{2 \pi}\left|\Phi_{\mathrm{m}_{1}}(\phi)\right|^{2} d \phi$
When $\Theta_{l m_{l}}(\theta) \& \Phi_{\mathrm{m}_{1}}(\phi)$ are auto-normalized then
$\mathrm{P}(\mathrm{r}) \mathrm{dr}=\left|R_{n l}\right|^{2} . r_{.}{ }^{2} d r$; in other words $\mathrm{P}(\mathrm{r})=\mathrm{r}^{2}\left|R_{n l}\right|^{2}$
Normalization Condition: $1=\int_{0}^{\infty} r^{2}\left|R_{n 1}\right|^{2} d r$
Expectation Values $<\mathrm{f}(\mathrm{r})>=\int_{0}^{\infty} \mathrm{f}(\mathrm{r}) \cdot \mathrm{P}(\mathrm{r}) \mathrm{dr}$

Ground State: Radial Probability Density

$$
P(r) d r=|\psi(r)|^{2} .4 \pi r^{2} d r
$$

$$
\Rightarrow P(r) d r=\frac{4}{a_{0}^{3}} r^{2} e^{-2 \frac{r}{a_{0}}}
$$

Probability of finding Electron for $\mathrm{r}>\mathrm{a}_{0}$
$P_{r>a_{0}}=\int_{a_{0}}^{\infty} \frac{4}{a_{0}^{3}} r^{2} e^{-2 \frac{r}{a_{0}}} d r$
To solve, employ change of variable Define $\mathrm{z}=\left[\frac{2 \mathrm{r}}{\mathrm{a}_{0}}\right]$;change limits of integration

$$
\begin{aligned}
P_{r>a_{0}} & =\frac{1}{2} \int_{2}^{\infty} z^{2} e^{-z} d z \quad \text { (such integrals called Error. Fn) } \\
& =-\left.\frac{1}{2}\left[z^{2}+2 z+2\right] e^{-z}\right|_{2} ^{\infty}=5 e^{2}=0.667 \Rightarrow 66.7 \%!!
\end{aligned}
$$

Most Probable \& Average Distance of Electron from Nucleus

Most Probable Distance:
In the ground state $\left(n=1, l=0, m_{l}=0\right) \quad P(r) d r=\frac{4}{a_{0}^{3}} r^{2} e^{-2 \frac{r}{a_{0}}}$
Most probable distance r from Nucleus \Rightarrow What value of r is $\mathrm{P}(\mathrm{r})$ max?
$\Rightarrow \frac{\mathrm{dP}}{\mathrm{dr}}=0 \Rightarrow \frac{4}{a_{0}^{3}} \cdot \frac{d}{d r}\left[r^{2} e^{-2 \frac{r}{a_{0}}}\right]=0 \Rightarrow\left[\frac{-2 r^{2}}{a_{0}}+2 r\right] e^{-2 \frac{r}{a_{0}}}=0$
$\Rightarrow \frac{2 r^{2}}{a_{0}}+2 r=0 \Rightarrow r=0$ or $r=a_{0} \ldots$ which solution is correct?
(see past quiz) : Can the electron BE at the center of Nucleus $(\mathrm{r}=0)$?
$P(r=0)=\frac{4}{a_{0}^{3}} 0^{2} e^{-2 \frac{0}{a_{0}}}=0!\Rightarrow$ Most Probable distance $r=a_{0} \quad$ (Bohr guessed right) What about the AVERAGE location <r> of the electron in Ground state?
$<\mathrm{r}>=\int_{\mathrm{r}=0}^{\infty} \mathrm{rP}(\mathrm{r}) \mathrm{dr}=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r r^{2} e^{-2 \frac{r}{a_{0}}} d r$...change of variable $\mathrm{z}=\frac{2 \mathrm{r}}{\mathrm{a}_{0}}$

Use general form $\int_{0}^{\infty} z^{n} e^{-z} d z=n!=n(n-1)(n-2) \ldots(1)$ $\langle r\rangle=\frac{a_{0}}{4} 3!=\frac{3 a_{0}}{2} \neq a_{0}$! Average \& most likely distance is not same. Why?
Asnwer is in the form of the radial Prob. Density: Not symmetric

Radial Probability Distribution $P(r)=r^{2} R(r)$

TABLE 7-2 Radial functions for hydrogen

$$
\begin{array}{lll}
n=1 & l=0 & R_{10}=\frac{2}{\sqrt{a_{0}^{3}}} e^{-r / a_{0}} \\
n=2 & l=0 & R_{20}=\frac{1}{\sqrt{2 a_{0}^{3}}}\left(1-\frac{r}{2 a_{0}}\right) e^{-r / 2 a_{0}} \\
n=3 & l=1 & R_{21}=\frac{1}{2 \sqrt{6 a_{0}^{3}}} \frac{r}{a_{0}} e^{-r / 2 a_{0}} \\
n=0 & R_{30}=\frac{2}{3 \sqrt{3 a_{0}^{3}}}\left(1-\frac{2 r}{3 a_{0}}+\frac{2 r^{2}}{27 a_{0}^{2}}\right) e^{-r / 3 a_{0}} \\
l=1 & R_{31}=\frac{8}{27 \sqrt{6 a_{0}^{3}}} \frac{r}{a_{0}}\left(1-\frac{r}{6 a_{0}}\right) e^{-r / 3 a_{0}} \\
l=2 & R_{32}=\frac{4}{8 \sqrt{30 a_{0}^{3}}} \frac{r^{2}}{a_{0}^{2}} e^{-r / 3 a_{0}}
\end{array}
$$

Because $\mathrm{P}(\mathrm{r})=\mathrm{r}^{2} \mathrm{R}(\mathrm{r})$
No matter what $\mathrm{R}(\mathrm{r})$ is for some n The prob. Of finding electron inside nucleus $=0$

TABLE 7-1 Spherical harmonics

$$
\begin{aligned}
& l=0 \\
& m=0 \\
& m=1 \\
& m=0 \\
& m=-1 \\
& l=2 \\
& m=2 \\
& m=1 \\
& m=0 \\
& m=-1 \\
& m=-2 \\
& Y_{00}=\sqrt{\frac{1}{4 \pi}} \\
& Y_{11}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi} \\
& Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
& Y_{1-1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi} \\
& Y_{22}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{2 i \phi} \\
& Y_{21}=-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
& Y_{20}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \\
& Y_{2-1}=\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{-i \phi} \\
& Y_{2-2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{-2 i \phi}
\end{aligned}
$$

Excited States ($\mathrm{n}>1$) of Hydrogen Atom : Birth of Chemistry !

Features in $\theta \& \phi$:
Consider $n=2, l=0 \Rightarrow \psi_{200}=$ Spherically Symmetric (last slide)
Excited States ($3 \&$ each same E_{n}) : $\psi_{211}, \psi_{210}, \psi_{21-1}$ are all 2p states
$\psi_{211}=\mathrm{R}_{21} \mathrm{Y}_{1}^{1}=\left(\frac{1}{\pi}\right)\left(\frac{\mathrm{Z}}{\mathrm{a}_{0}}\right)^{3 / 2}\left(\frac{\mathrm{Z}}{8}\right)\left(\frac{r}{a_{0}}\right) e^{\frac{-\mathrm{Zr}}{a_{0}}} \cdot \sin \theta \cdot e^{i \phi}$
$\left|\psi_{211}\right|^{2}=\left|\psi_{211}^{*} \psi_{211}\right| \propto \sin ^{2} \theta$ Max at $\theta=\frac{\pi}{2}$, min at $\theta=0$; Symm in ϕ
$\psi_{210}=R_{21}(\mathrm{r}) \mathrm{Y}_{1}^{0}(\theta, \phi) ; \mathrm{Y}_{1}^{0}(\theta, \phi) \propto \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta ;$ max at $\theta=0$, min at $\theta=\frac{\pi}{2}$
We call this $2 p_{z}$ state because of its extent in z
 then a "designer" wavefuntion $\psi^{\prime}=a \psi_{1}+b \psi_{2}$ is also a sol. of TISE To check this, substitute ψ ' in place of $\psi \&$ convince yourself that

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{\prime}+U \psi^{\prime}=E \psi^{\prime}
$$

Designer Wave Functions: Solutions of S. Eq!

Linear Superposition Principle means allows me to "cook up" wavefunctions
$\psi_{2 p_{x}}=\frac{1}{\sqrt{2}}\left[\psi_{211}+\psi_{21-1}\right] \ldots .$. has electron "cloud" oriented along x axis
$\psi_{2 \mathrm{p}_{\mathrm{y}}}=\frac{1}{\sqrt{2}}\left[\psi_{211}-\psi_{21-1}\right] \ldots . .$. has electron "cloud" oriented along y axis
So from 4 solutions $\psi_{200}, \psi_{210}, \psi_{211}, \psi_{21-1} \rightarrow 2 s, 2 p_{x}, 2 p_{y}, 2 p_{z}$

Similarly for $\mathrm{n}=3$ states ...and so on ...can get very complicated structure in $\theta \& \phi$.......which I can then mix \& match to make electrons "most likely" to be where I want them to be!

Designer Wave Functions: Solutions of S. Eq!

$n=2, \ell=1, m_{\ell}= \pm 1 \quad n=3, \ell=1, m_{\ell}=0 \quad n=3, \ell=2, m_{\ell}=0$

Energy States, Degeneracy \& Transitions

The "Magnetism"of an Orbiting Electron

Precessing electron \rightarrow Current in loop \rightarrow Magnetic Dipole moment μ

Electron in motion around nucleus \Rightarrow circulating charge \Rightarrow curent i
$i=\frac{-e}{T}=\frac{-e}{\frac{2 \pi r}{v}}=\frac{-e p}{2 \pi m r}$; Area of current loop $\mathrm{A}=\pi \mathrm{r}^{2}$
Magnetic Moment $|\mu|=\mathrm{iA}=\left(\frac{-\mathrm{e}}{2 \mathrm{~m}}\right) r p ; \vec{\mu}=\left(\frac{-\mathrm{e}}{2 \mathrm{~m}}\right) \vec{r} \times \vec{p}=\left(\frac{-\mathrm{e}}{2 \mathrm{~m}}\right) \vec{L}$
Like the $\overrightarrow{\mathrm{L}}$, magnetic moment $\vec{\mu}$ also precesses about "z" axis
z component, $\mu_{\mathrm{z}}=\left(\frac{-\mathrm{e}}{2 \mathrm{~m}}\right) L_{z}=\left(\frac{-\mathrm{e} \hbar}{2 \mathrm{~m}}\right) m_{l}=-\mu_{\mathrm{B}} m_{l}=$ quantized!

Quantized Magnetic Moment

$$
\begin{aligned}
\mu_{\mathrm{z}} & =\left(\frac{-\mathrm{e}}{2 \mathrm{~m}}\right) L_{\mathrm{z}}=\left(\frac{-\mathrm{e} \hbar}{2 \mathrm{~m}}\right) m_{l} \\
& =-\mu_{\mathrm{B}} m_{l} \\
\mu_{\mathrm{B}} & =\text { Bohr Magnetron } \\
& =\left(\frac{\mathrm{e} \hbar}{2 \mathrm{~m}_{\mathrm{e}}}\right)
\end{aligned}
$$

Why all this ? Need to find a way to break the Energy Degeneracy \& get electron in each (n, l, m_{l}) state to identify itself, so we can "talk" to it and make it do our bidding: "Puppy training"

"Lifting" Degeneracy : Magnetic Moment in External B Field

Apply an External $\overrightarrow{\mathrm{B}}$ field on a Hydrogen atom (viewed as a dipole) Consider $\overrightarrow{\mathrm{B}} \| \overrightarrow{\mathrm{Z}}$ axis (could be any other direction too)
The dipole moment of the Hydrogen atom (due to electron orbit) experiences a Torque $\vec{\tau}=\vec{\mu} \times \vec{B}$ which does work to align $\vec{\mu} \| \vec{B}$ but this can not be (same Uncertainty principle argument)
\Rightarrow So, Instead, $\vec{\mu}$ precesses (dances) around \vec{B}... like a spinning top
The Azimuthal angle ϕ changes with time : calculate frequency
Look at Geometry: \mid projection along $\mathrm{x}-\mathrm{y}$ plane $:|\mathrm{dL}|=\mathrm{L} \sin \theta \cdot \mathrm{d} \phi$
$\Rightarrow d \phi=\frac{|\mathrm{dL}|}{\mathrm{L} \sin \theta}$; Change in Ang Mom. $|d L|=|\tau| d t=\left|\frac{q}{2 m} L B \sin \theta\right| d t$
$\Rightarrow \omega_{\mathrm{L}}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{1}{\mathrm{~L} \sin \theta} \frac{\mid \mathrm{dL}}{\mathrm{dt}}=\frac{1}{\mathrm{~L} \sin \theta} \frac{q}{2 m} L B \sin \theta=\frac{q B}{2 m_{e}}$ Larmor Freq
ω_{L} depends on B , the applied external magnetic field

"Lifting" Degeneracy : Magnetic Moment in External B Field

WORK done to reorient $\vec{\mu}$ against \vec{B} field: $\mathrm{dW}=\tau \mathrm{d} \theta=-\mu \mathrm{B} \sin \theta \mathrm{d} \theta$ $d W=d(\mu \mathrm{~B} \cos \theta):$ This work is stored as orientational Pot. Energy U

$$
\mathrm{dW}=-\mathrm{dU}
$$

Define Magnetic Potential Energy $\mathrm{U}=-\vec{\mu} \cdot \vec{B}=-\mu \cos \theta \cdot B=-\mu_{z} B$ Change in Potential Energy $\mathrm{U}=\frac{\mathrm{e} \hbar}{2 \mathrm{~m}_{\mathrm{e}}} m_{l} B=\hbar \omega_{\mathrm{L}} m_{l}$

Zeeman Effect in Hydrogen Atom
In presence of External B Field, Total energy of H atom changes to

$$
\mathrm{E}=\mathrm{E}_{0}+\hbar \omega_{\mathrm{L}} m_{l}
$$

So the Ext. B field can break the E degeneracy "organically" inherent in the H atom. The Energy now depends not just on n but also m_{l}

Zeeman Effect Due to Presence of External B field

Bye Bye Energy Degeneracy
No magnetic field Magnetic field present

Spectrum without Spectrum with magnetic magnetic field
field present

Electron has "Spin": An additional degree of freedom

The Consequence of Spinning Electron

Spectrum without spin
Spectrum with spin

The Periodic Table based in 4 Quantum numbers

